People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cilingir, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Two-body wear of occlusal splint materials.
Abstract
This study investigates the wear resistance of four different types of occlusal splint materials based on two-body wear simulations under wet and dry conditions. Twenty specimens of each splint material (Dentalon Plus, Orthoplast, Biocryl C, and Eclipse), each with a diameter of 16 mm and a thickness of 3 mm, were tested, half under wet and half under dry conditions. Each wear test was performed using a device called chewing simulator CS-4 (n=10; test load: 50 N; number of cycles: 10000, 20000, and 30000; continuous rinsing with 30°C water for wet conditions); the antagonists were simulated using steel balls. Wear was determined using a 3D laser scanner and a surface analysis program. To detect significant statistical differences, wear data after 10000; 20000; and 30000 cycles were compared using the Kruskal-Wallis test and the Mann-Whitney U-test. The level of significance was set at 5%. Significant differences were found between the groups of different materials tested under wet conditions (P<0.05), whereas no differences between them were found under dry conditions (P>0.05). No significant difference was found between the wet and dry conditions for all materials and cycles (P>0.05). For groups of different materials tested under wet conditions, the degree of volume loss generated in the Chewing Simulator CS-4 was found to differ significantly for different numbers of cycles. The presence of water had no effect on the volume loss in the different material groups that were tested.