Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kurt, H.

  • Google
  • 1
  • 7
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Two-body wear of occlusal splint materials.28citations

Places of action

Chart of shared publication
Mumcu, E.
1 / 1 shared
Cilingir, A.
1 / 1 shared
Tuncer, N.
1 / 2 shared
Sülün, T.
1 / 1 shared
Gernet, W.
1 / 1 shared
Kj, Erdelt
1 / 1 shared
Beuer, Florian
1 / 13 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Mumcu, E.
  • Cilingir, A.
  • Tuncer, N.
  • Sülün, T.
  • Gernet, W.
  • Kj, Erdelt
  • Beuer, Florian
OrganizationsLocationPeople

article

Two-body wear of occlusal splint materials.

  • Mumcu, E.
  • Cilingir, A.
  • Tuncer, N.
  • Sülün, T.
  • Gernet, W.
  • Kj, Erdelt
  • Beuer, Florian
  • Kurt, H.
Abstract

This study investigates the wear resistance of four different types of occlusal splint materials based on two-body wear simulations under wet and dry conditions. Twenty specimens of each splint material (Dentalon Plus, Orthoplast, Biocryl C, and Eclipse), each with a diameter of 16 mm and a thickness of 3 mm, were tested, half under wet and half under dry conditions. Each wear test was performed using a device called chewing simulator CS-4 (n=10; test load: 50 N; number of cycles: 10000, 20000, and 30000; continuous rinsing with 30°C water for wet conditions); the antagonists were simulated using steel balls. Wear was determined using a 3D laser scanner and a surface analysis program. To detect significant statistical differences, wear data after 10000; 20000; and 30000 cycles were compared using the Kruskal-Wallis test and the Mann-Whitney U-test. The level of significance was set at 5%. Significant differences were found between the groups of different materials tested under wet conditions (P<0.05), whereas no differences between them were found under dry conditions (P>0.05). No significant difference was found between the wet and dry conditions for all materials and cycles (P>0.05). For groups of different materials tested under wet conditions, the degree of volume loss generated in the Chewing Simulator CS-4 was found to differ significantly for different numbers of cycles. The presence of water had no effect on the volume loss in the different material groups that were tested.

Topics
  • surface
  • simulation
  • wear resistance
  • wear test
  • steel