Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mcphail, D. S.

  • Google
  • 3
  • 1
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2012Evaluation of imperfections in silica and chalcogenide glass microspheres using focussed ion beam milling and imaging1citations
  • 2012Focused ion beam sectioning of micro-optics as a tool for destructive testing for optical materialcitations
  • 2012Corrosion at the surface of chalcogenide glass microspheres2citations

Places of action

Chart of shared publication
Chater, R. J.
3 / 6 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Chater, R. J.
OrganizationsLocationPeople

article

Evaluation of imperfections in silica and chalcogenide glass microspheres using focussed ion beam milling and imaging

  • Mcphail, D. S.
  • Chater, R. J.
Abstract

<p>Microspheres made from optical glasses such as silica and chalcogenide are used as both passive and active optical elements in micro-optics systems and devices. The homogeneity of the microspheres is crucial to their optical quality and performance in such devices and so it is essential, in optimizing such systems, that techniques with nanometer scale resolution are developed to measure the internal structure and homogeneity of such spheres. In this work an analytical protocol based on focussed ion beam milling, combined with secondary ion and secondary electron imaging, has been developed to study the internal homogeneity of glass microspheres. The results have shown that silica microspheres with diameters of three to five microns, fabricated by a sol-gel method, have internal inhomogeneities and voids that will lead to non-uniform optical properties. The FIB milling and imaging technique developed has been found to be a very useful method of studying such inhomogeneities, which have been proposed, but never previously observed, in glass microspheres. The FIB based technique has also been used on larger chalcogenide glass (Ga <sub>2</sub>S <sub>3</sub>:La <sub>2</sub>S <sub>3</sub>) microspheres (diameter of order 70 microns) but no inhomogeneities have been observed at the spatial resolution of a few microns so far achieved for these larger microspheres. This study suggests that the FIB based milling and imaging technique may have potential for quantitative use in the measurement of morphological variations in such systems as well as in the study of aging processes in micron-sized glass spheres.</p>

Topics
  • impedance spectroscopy
  • grinding
  • glass
  • glass
  • milling
  • aging
  • void
  • aging