Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Higginson, R. L.

  • Google
  • 3
  • 7
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Effect of Machining on Shear-Zone Microstructure in Ti-15V-3Cr-3Al-3Sn: Conventional and Ultrasonically Assisted Turning6citations
  • 2005Phase identification of oxide scale on low carbon steel5citations
  • 2005Phase determination and microstructure of oxide scales formed on steel at high temperature33citations

Places of action

Chart of shared publication
Muhammad, R.
1 / 20 shared
Tse, Y. Y.
1 / 2 shared
Roy, A.
1 / 118 shared
Shi, Q.
1 / 2 shared
Silberschmidt, Vadim V.
1 / 524 shared
Birosca, Soran
2 / 26 shared
West, G. D.
1 / 6 shared
Chart of publication period
2016
2005

Co-Authors (by relevance)

  • Muhammad, R.
  • Tse, Y. Y.
  • Roy, A.
  • Shi, Q.
  • Silberschmidt, Vadim V.
  • Birosca, Soran
  • West, G. D.
OrganizationsLocationPeople

article

Phase determination and microstructure of oxide scales formed on steel at high temperature

  • West, G. D.
  • Higginson, R. L.
  • Birosca, Soran
Abstract

<p>Even in simple low-alloy steels the oxide scales that form during hot working processes are often a complex mixture of three iron oxide phases: haematite, magnetite and wüstite. The mechanical properties, and hence descalability, are intimately linked with phase distribution and microstructure, which in turn are sensitive to both steel composition and oxidation conditions. In this study electron backscatter diffraction in the SEM has been used to characterize the microstructures of oxide scales formed on two compositions of low-alloy steel. The technique can unambiguously differentiate between the candidate phases to provide the phase distribution within the scale. This is used to investigate grain orientation relationships both within and between phase layers. It has been found that the strength of the orientational relationship between the magnetite and wüstite layers is dependent on steel composition, and in particular Si content. In a low-Si (0.01 wt%) alloy only a very weak relationship was found to exist for a range of oxidation temperatures (800-1000 °C), whereas for the higher Si (0.3 7 wt%) alloy a strong relationship was observed under the same oxidation conditions. These orientational relationships are particularly important because, in this temperature range, the majority of oxide scale growth occurs at the magnetite/wüstite interphase boundary.</p>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • scanning electron microscopy
  • strength
  • steel
  • iron
  • electron backscatter diffraction