Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Doi, Yoji

  • Google
  • 1
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Effects of particle size and briquetting of soda‐lime‐silicate glass batch on viscosity during batch‐to‐melt conversion8citations

Places of action

Chart of shared publication
Mccarthy, Benjamin P.
1 / 1 shared
Hrma, Pavel
1 / 2 shared
Yano, Tetsuji
1 / 2 shared
Schweiger, Michael J.
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Mccarthy, Benjamin P.
  • Hrma, Pavel
  • Yano, Tetsuji
  • Schweiger, Michael J.
OrganizationsLocationPeople

article

Effects of particle size and briquetting of soda‐lime‐silicate glass batch on viscosity during batch‐to‐melt conversion

  • Mccarthy, Benjamin P.
  • Hrma, Pavel
  • Doi, Yoji
  • Yano, Tetsuji
  • Schweiger, Michael J.
Abstract

<jats:title>Abstract</jats:title><jats:p>To assess the effects of grain size and briquetting on glass‐batch melting, we measured the viscosity (<jats:italic>η</jats:italic><jats:sub>b</jats:sub>) of an industrial glass batch during its conversion to molten simulated architectural glass within the temperature interval of 1050‐1300°C and at a shear rate of 0.02 s<jats:sup>−1</jats:sup>. On the basis of the mass fraction of undissolved sand (<jats:italic>x</jats:italic><jats:sub>s</jats:sub>), which was determined using X‐ray diffraction analysis on quenched batch samples, and the gas‐phase fraction (<jats:italic>ϕ</jats:italic><jats:sub>p</jats:sub>), which was obtained from volumetric measurements, we established the relationship ln(<jats:italic>η</jats:italic><jats:sub>b</jats:sub>/<jats:italic>η</jats:italic><jats:sub>m</jats:sub>) = <jats:italic>a</jats:italic><jats:sub>0</jats:sub> + <jats:italic>b</jats:italic><jats:sub>s</jats:sub><jats:italic>x</jats:italic><jats:sub>s</jats:sub> + <jats:italic>a</jats:italic><jats:sub>p</jats:sub><jats:italic>ϕ</jats:italic><jats:sub>p</jats:sub>, where <jats:italic>η</jats:italic><jats:sub>m</jats:sub> is the transition melt viscosity, <jats:italic>a</jats:italic><jats:sub>0</jats:sub> is the melt homogeneity coefficient, <jats:italic>b</jats:italic><jats:sub>s</jats:sub> is the coefficient for undissolved sand, and <jats:italic>a</jats:italic><jats:sub>p</jats:sub> is the coefficient for bubbles. The obtained values, <jats:italic>b</jats:italic><jats:sub>s</jats:sub> = 8.756 and <jats:italic>a</jats:italic><jats:sub>p</jats:sub> = 0.658, indicate that undissolved silica sand strongly influences batch viscosity. Consequently, compared with coarse‐grained batches, fine raw materials and briquetting resulted in lower batch viscosity during conversion. Owing to their lower viscosities and higher heat conductivities, batches from finer raw materials or batches shaped into briquettes are expected to enhance the melting rate of batch blankets in industrial glass‐melting furnaces.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • melt
  • glass
  • glass
  • lime
  • melt viscosity