People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De La Fuente, German Francisco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Grain Orientation, Angle of Incidence, and Beam Polarization Effects on Ultraviolet 300 ps‐Laser‐Induced Nanostructures on 316L Stainless Steelcitations
- 2023Data for "Grain orientation, angle of incidence, and beam polarization effects on UV-300 ps-laser-induced nanostructures on 316L stainless steel"
- 2022Highly Regular Hexagonally-Arranged Nanostructures on Ni-W Alloy Tapes upon Irradiation with Ultrashort UV Laser Pulsescitations
- 2022Use of Green Fs Lasers to Generate a Superhydrophobic Behavior in the Surface of Wind Turbine Bladescitations
- 2017Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glasscitations
Places of action
Organizations | Location | People |
---|
article
Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glass
Abstract
<jats:title>Abstract</jats:title><jats:p>This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to process glass and ceramics with low thermal shock resistance. Glass coatings containing 76.24% by weight PbO are thus here reported, as obtained by this method on commercial soda‐lime planar glass substrates. Their higher indices of refraction (1.58 vs 1.52 for commercial soda‐lime glass) result in attractive waveguiding potential, as demonstrated with measurements using focused light from a He‐Ne laser beam. Scanning and transmission electron microscopy studies reveal excellent integration and compatibility between the observed coatings and substrates, where diffusion in the proximity of the interface was studied by <jats:styled-content style="fixed-case">EDS</jats:styled-content> analysis. Crystalline phases have not been found within the coating, or within the substrate, as concluded from the absence of Bragg‐peaks in <jats:styled-content style="fixed-case">XRD</jats:styled-content> experiments.</jats:p>