Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tatarko, Peter

  • Google
  • 7
  • 42
  • 125

Institute of Inorganic Chemistry

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Wear characteristics of dual‐phase high‐entropy ceramics: Influence of the testing method2citations
  • 2023Fabrication and characterization of high entropy pyrochlore ceramics ; Fabricación y caracterización de cerámicas de pirocloro de alta entropía22citations
  • 2023ZrB2-SiC Composites with Rare-Earth Oxide Additivescitations
  • 2022Fabrication and characterization of high entropy pyrochlore ceramicscitations
  • 2021Structure Prediction and Mechanical Properties of Silicon Hexaboride on Ab Initio Level9citations
  • 2020Torsional shear strength and elastic properties of adhesively bonded glass-to-steel components12citations
  • 2016Joining of CVD-SiC coated and uncoated fibre reinforced ceramic matrix composites with pre-sintered Ti3SiC2 MAX phase using Spark Plasma Sintering80citations

Places of action

Chart of shared publication
Hvizdoš, Pavol
1 / 6 shared
Švec, Peter
1 / 4 shared
Petruš, Ondrej
1 / 4 shared
Naughtonduszová, Annamária
1 / 1 shared
Dusza, Ján
1 / 11 shared
Kovalčíková, Alexandra
1 / 3 shared
Medveď, Dávid
1 / 1 shared
Ünsal, Hakan
1 / 1 shared
Ďaková, Lenka
1 / 1 shared
Hanzel, Ondrej
2 / 6 shared
Erčić, Jelena
2 / 4 shared
Butulija, Svetlana
2 / 6 shared
Zagorac, Jelena B.
2 / 10 shared
Matović, Branko
3 / 52 shared
Sedlák, Richard
1 / 6 shared
Zagorac, Dejan
3 / 23 shared
Cvijović-Alagić, Ivana
2 / 44 shared
Lisnichuk, Maksym
2 / 7 shared
Unsal, Hakan
1 / 1 shared
Dlouhy, Ivo
1 / 6 shared
Furdosova, Zuzana
1 / 1 shared
Chlup, Zdenek
1 / 1 shared
Hičak, Michal
1 / 1 shared
Tatarkova, Monika
1 / 1 shared
Zhukova, Inga
1 / 1 shared
Hosseini, Naser
1 / 2 shared
Šajgalik, Pavol
1 / 1 shared
Kovalčikova, Alexandra
1 / 1 shared
Zagorac, Jelena
1 / 9 shared
Sedlak, Richard
1 / 2 shared
Zarubica, Aleksandra R.
1 / 2 shared
Škundrić, Tamara
1 / 4 shared
Valenza, Antonino
1 / 36 shared
Ferraris, Monica
2 / 76 shared
Goglio, Luca
1 / 21 shared
Paolino, Davide S.
1 / 12 shared
Pierre, Stefano De La
1 / 3 shared
Scalici, Tommaso
1 / 8 shared
Reece, Michael J.
1 / 18 shared
Casalegno, Valentina
1 / 33 shared
Hu, Chunfeng
1 / 2 shared
Salvo, Milena
1 / 58 shared
Chart of publication period
2024
2023
2022
2021
2020
2016

Co-Authors (by relevance)

  • Hvizdoš, Pavol
  • Švec, Peter
  • Petruš, Ondrej
  • Naughtonduszová, Annamária
  • Dusza, Ján
  • Kovalčíková, Alexandra
  • Medveď, Dávid
  • Ünsal, Hakan
  • Ďaková, Lenka
  • Hanzel, Ondrej
  • Erčić, Jelena
  • Butulija, Svetlana
  • Zagorac, Jelena B.
  • Matović, Branko
  • Sedlák, Richard
  • Zagorac, Dejan
  • Cvijović-Alagić, Ivana
  • Lisnichuk, Maksym
  • Unsal, Hakan
  • Dlouhy, Ivo
  • Furdosova, Zuzana
  • Chlup, Zdenek
  • Hičak, Michal
  • Tatarkova, Monika
  • Zhukova, Inga
  • Hosseini, Naser
  • Šajgalik, Pavol
  • Kovalčikova, Alexandra
  • Zagorac, Jelena
  • Sedlak, Richard
  • Zarubica, Aleksandra R.
  • Škundrić, Tamara
  • Valenza, Antonino
  • Ferraris, Monica
  • Goglio, Luca
  • Paolino, Davide S.
  • Pierre, Stefano De La
  • Scalici, Tommaso
  • Reece, Michael J.
  • Casalegno, Valentina
  • Hu, Chunfeng
  • Salvo, Milena
OrganizationsLocationPeople

article

Wear characteristics of dual‐phase high‐entropy ceramics: Influence of the testing method

  • Tatarko, Peter
  • Hvizdoš, Pavol
  • Švec, Peter
  • Petruš, Ondrej
  • Naughtonduszová, Annamária
  • Dusza, Ján
  • Kovalčíková, Alexandra
  • Medveď, Dávid
  • Ünsal, Hakan
  • Ďaková, Lenka
Abstract

<jats:title>Abstract</jats:title><jats:p>Wear behavior of a fine‐grained dual‐phase high‐entropy carbide/boride ceramics was investigated using ball‐on‐flat dry sliding methods in air, applying rotational and linear reciprocation motion with SiC counterpart. The investigated system showed very high nanohardness of the carbide and boride grains with mean values of 37.4 ± 2.3 and 43.0 ± 2.9 GPa, respectively, with the microhardness of dual system HV1 29.4 ± 2.0 GPa. The stabilized friction coefficient values during the circular tests changing from .62 to .77. During the reciprocal test, the frictional coefficient values are very similar with an average value of .53. The specific wear rates during the circular motion were similar in the range from 4.65 × 10<jats:sup>−7</jats:sup> to 1.68 × 10<jats:sup>−7</jats:sup> mm<jats:sup>3</jats:sup>/N m. During the reciprocal test, the wear rates at 5 and 25 N were similar as in the case of circular motion, but at 50 N load, the wear rate increased significantly to the value of 9.11 × 10<jats:sup>−6</jats:sup> mm<jats:sup>3</jats:sup>/N m. The dominant wear mechanisms in all cases were oxidation driven tribochemical reaction and tribolayer formation in boride grains and mechanical wear in carbide grains. During the linear reciprocation test, the loading mode created conditions resulted in relatively low coefficient of friction and very high specific wear rate.</jats:p>

Topics
  • grain
  • phase
  • carbide
  • boride
  • coefficient of friction