Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Günther, Timon E.

  • Google
  • 2
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Synthesis and characterization of precursor derived TiN@Si–Al–C–N ceramic nanocomposites for oxygen reduction reaction1citations
  • 2023Synthesis and characterization of precursor derived TiN@Si–Al–C–N ceramic nanocomposites for oxygen reduction reaction1citations

Places of action

Chart of shared publication
Loukrakpam, Rameshwori
2 / 3 shared
Schafföner, Stefan
2 / 14 shared
Motz, Günter
2 / 8 shared
Roth, Christina
2 / 22 shared
Eranezhuth Wasan, Awin
1 / 1 shared
Awin, Eranezhuth Wasan
1 / 7 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Loukrakpam, Rameshwori
  • Schafföner, Stefan
  • Motz, Günter
  • Roth, Christina
  • Eranezhuth Wasan, Awin
  • Awin, Eranezhuth Wasan
OrganizationsLocationPeople

article

Synthesis and characterization of precursor derived TiN@Si–Al–C–N ceramic nanocomposites for oxygen reduction reaction

  • Loukrakpam, Rameshwori
  • Schafföner, Stefan
  • Motz, Günter
  • Roth, Christina
  • Awin, Eranezhuth Wasan
  • Günther, Timon E.
Abstract

The development of efficient and durable catalysts is critical for the commercialization of fuel cells, as the catalysts’ durability and reactivity dictate their ultimate lifetime and activity. In this work, amorphous silicon-based ceramics (Si–C–N and Si–Al–C–N) and TiN@Si–Al–C–N nanocomposites were developed using a precursor derived ceramics approach. In TiN@Si–Al–C–N nanocomposites, TiN nanocrystals (with sizes in the range of 5–12 nm) were effectively anchored on an amorphous Si–Al–C–N support. The nanocomposites were found to be mesoporous in nature and exhibited a surface area as high as 132 m2/g. The average pore size of the nanocomposites was found to increase with an increase in the pyrolysis temperature, and a subsequent graphitization of free carbon was observed as revealed from the Raman spectra. The ceramics were investigated for electrocatalytic activity toward the oxygen reduction reaction using the rotating disk electrode method. The TiN@Si–Al–C–N nanocomposites showed an onset potential of 0.7 V versus reversible hydrogen electrode for oxygen reduction, which seems to indicate a 4-electron pathway at the pyrolysis temperature of 1000°C in contrast to a 2-electron pathway exhibited by the nanocomposites pyrolyzed at 750°C via the Koutecky–Levich plot.

Topics
  • nanocomposite
  • pyrolysis
  • impedance spectroscopy
  • pore
  • surface
  • amorphous
  • Carbon
  • Oxygen
  • Hydrogen
  • Silicon
  • ceramic
  • durability
  • tin