Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Batra, Uma

  • Google
  • 2
  • 5
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Evaluation of corrosion resistance, mechanical integrity loss and biocompatibility of PCL/HA/TiO2 hybrid coated biodegradable ZM21 Mg alloy27citations
  • 2021Structural, morphological, and opto‐electrical properties of Y<sub>2‐x</sub>Yb<sub>x</sub>O<sub>3</sub> nanoparticles synthesized using co‐precipitation method13citations

Places of action

Chart of shared publication
Mahapatro, Anil
1 / 1 shared
Singh, Navdeep
1 / 6 shared
Tripathi, Harshit
1 / 2 shared
Sharma, J. D.
1 / 2 shared
Kumar, Sushil
1 / 5 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Mahapatro, Anil
  • Singh, Navdeep
  • Tripathi, Harshit
  • Sharma, J. D.
  • Kumar, Sushil
OrganizationsLocationPeople

article

Structural, morphological, and opto‐electrical properties of Y<sub>2‐x</sub>Yb<sub>x</sub>O<sub>3</sub> nanoparticles synthesized using co‐precipitation method

  • Batra, Uma
  • Tripathi, Harshit
  • Sharma, J. D.
  • Kumar, Sushil
Abstract

<jats:title>Abstract</jats:title><jats:p>Advanced polycrystalline ceramics are gaining importance on development of light‐emitting diodes, infrared detectors, solid‐state lasers, etc. The physical properties of these materials are dependent on variety of dopant concentrations. In this manuscript, we have synthesized Yb‐doped Y<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> (Y<jats:sub>2‐x</jats:sub>Yb<jats:sub>x</jats:sub>O<jats:sub>3</jats:sub>) (x = 0.0, 0.02, 0.06, 0.1, 0.14) nanoparticles using co‐precipitation method. X‐ray diffraction patterns confirm the presence of cubic phase for pure Y<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanoparticles and mixed phase (cubic + monoclinic) for Yb‐doped Y<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanoparticles. The average crystallite size is found in the range 71 to 31 nm and lattice strain −1 × 10<jats:sup>−4</jats:sup> to‐5 × 10<jats:sup>−4</jats:sup> calculated using Debye‐Scherrer formula and Willimission‐Hall plot. The crystallite size decrease with dopant concentration upto x = 0.10 and material is found to exhibit compressive lattice strain. Field‐emission scanning electron microscopy shows agglomerated nanoparticles. The Fourier‐transform infrared spectroscopy confirms the presence of metal oxide functional groups (Y‐O and Yb‐O) and vibrational bands corresponding to O‐H vibration, C‐O bending, and stretching modes in the samples. The band gap energy (<jats:italic>E</jats:italic><jats:sub>g</jats:sub>) is found to decrease from 5.14 eV for x = 0.0 to 3.60 eV for x = 0.14 composition. The photolumincence spectra show characteristic blue and green emission at 486 nm for x = 0.10 and 525 nm for x = 0.0, respectively. The frequency‐dependent dielectric studies confirm the enhancement in dielectric constant with increase in Yb doping. These structural, morphological, optical, and electrical properties of Yb:Y<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanoparticles are helpful for selecting this material as an appropriate candidate for laser host material for medical imaging and display devices applications.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • dielectric constant
  • precipitation
  • ceramic
  • infrared spectroscopy