Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Piotrkiewicz, Paulina

  • Google
  • 18
  • 26
  • 118

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024Study of the impact of metallic components Cu, Ni, Cr, and Mo on the microstructure of Al2O3–Cu–Me composites1citations
  • 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering2citations
  • 2021Zirconia–Alumina Composites Obtained by Centrifugal Slip Casting as Attractive Sustainable Material for Application in Construction13citations
  • 2021Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sintering8citations
  • 2021Environmental footprint as a criterion in the ZTA composites forming process via centrifugal slip casting9citations
  • 2021Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Casting12citations
  • 2021Characterization of the alumina oxide, copper and nickel powders and their processing intended for fabrication of the novel hybrid composite: A comparative study2citations
  • 2021Investigation on microstructure and selected properties of aluminum oxide–copper–nickel ceramic–metal composites1citations
  • 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applications9citations
  • 2021Investigation of microstructure and selected properties of Al2O3-Cu and Al2O3-Cu-Mo composites11citations
  • 2021Novel Functionally Gradient Composites Al2O3-Cu-Mo Obtained via Centrifugal Slip Casting8citations
  • 2020Effect of the powder consolidation method type on the microstructure and selected properties of Al2O3-Cu-Ni composites1citations
  • 2020Microstructure and mechanical properties of Al2O3-Cu-Ni hybrid composites fabricated by slip casting9citations
  • 2020Effect of the sintering temperature on microstructure and properties of Al2O3–Cu–Ni hybrid composites obtained by PPS10citations
  • 2020The influence of metal phase composition on microstructure and mechanical properties of Al2O3-Cu-Cr ceramic metal composites5citations
  • 2019Investigation on fabrication and property of graded composites obtained via centrifugal casting in the magnetic field17citations
  • 2019A possibility to obtain Al2O3-Cu-Ni composites via slip casting methodcitations
  • 2019Al2O3-Cu-Mo hybrid composites: fabrication, microstructure, propertiescitations

Places of action

Chart of shared publication
Kaszuwara, Waldemar
13 / 65 shared
Zygmuntowicz, Justyna
18 / 57 shared
Maciągowska, Małgorzata
1 / 1 shared
Wachowski, Marcin
14 / 28 shared
Sobiecki, Robert
1 / 1 shared
Cymerman, Konrad
3 / 6 shared
Żurowski, Radosław
5 / 10 shared
Krasnowski, Marek
2 / 9 shared
Kulikowski, Krzysztof
1 / 18 shared
Konopka, Katarzyna
7 / 45 shared
Tomaszewska, Justyna
4 / 7 shared
Szachogłuchowicz, Ireneusz
1 / 4 shared
Gizowska, Magdalena
1 / 4 shared
Bulski, Bartłomiej
1 / 1 shared
Szymańska, J.
1 / 1 shared
Kosiorek, Justyna
2 / 2 shared
Zacharko, Bartosz
1 / 1 shared
Gloc, Michał
1 / 17 shared
Torzewski, Janusz
1 / 6 shared
Łoś, Joanna
1 / 2 shared
Kurowski, Bernard
1 / 1 shared
Winkler, Hanna
1 / 2 shared
Miazga, Aleksandra
3 / 35 shared
Falkowski, Paweł
2 / 10 shared
Szymańska, Joanna
1 / 8 shared
Łukasiak, Agata
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019

Co-Authors (by relevance)

  • Kaszuwara, Waldemar
  • Zygmuntowicz, Justyna
  • Maciągowska, Małgorzata
  • Wachowski, Marcin
  • Sobiecki, Robert
  • Cymerman, Konrad
  • Żurowski, Radosław
  • Krasnowski, Marek
  • Kulikowski, Krzysztof
  • Konopka, Katarzyna
  • Tomaszewska, Justyna
  • Szachogłuchowicz, Ireneusz
  • Gizowska, Magdalena
  • Bulski, Bartłomiej
  • Szymańska, J.
  • Kosiorek, Justyna
  • Zacharko, Bartosz
  • Gloc, Michał
  • Torzewski, Janusz
  • Łoś, Joanna
  • Kurowski, Bernard
  • Winkler, Hanna
  • Miazga, Aleksandra
  • Falkowski, Paweł
  • Szymańska, Joanna
  • Łukasiak, Agata
OrganizationsLocationPeople

article

Effect of the sintering temperature on microstructure and properties of Al2O3–Cu–Ni hybrid composites obtained by PPS

  • Kaszuwara, Waldemar
  • Zygmuntowicz, Justyna
  • Cymerman, Konrad
  • Piotrkiewicz, Paulina
  • Wachowski, Marcin
  • Falkowski, Paweł
Abstract

In the present research, the influence of sintering temperature on the microstructure and properties of Al2O3–Cu–Ni hybrid composites prepared by the Pulse Plasma Sintering (PPS) technique were described. In this research, three temperatures have been selected: 1250°C, 1300°C, and 1350°C. SEM observations were carried out to determine the distribution of the metallic phase in the composite depending on the sintering temperature. The conducted experiments and microscopic observations enabled a better understanding of the phenomena occurring between the ceramic matrix and metallic phase in the obtained materials. The mechanical properties like a hardness and fracture toughness were measured. The technology applied allowed us to obtain ceramic-metal composites with a homogeneous microstructure. It was found that the sintering temperature influences the selected physical and mechanical properties of the composites produced. It was found that samples produced at 1300°C are characterized by the highest relative density and the mechanical properties.

Topics
  • density
  • microstructure
  • phase
  • scanning electron microscopy
  • experiment
  • composite
  • hardness
  • ceramic
  • fracture toughness
  • sintering