People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cymerman, Konrad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024A comparative study of oxidation behavior of Co4Sb12 and Co4Sb10.8Se0.6Te0.6 skutterudite thermoelectric materials fabricated via fast SHS-PPS routecitations
- 2023Rapid fabrication of Se-modified skutterudites obtained via self-propagating high-temperature synthesis and pulse plasma sintering routecitations
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2021Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sinteringcitations
- 2020Effect of the sintering temperature on microstructure and properties of Al2O3–Cu–Ni hybrid composites obtained by PPScitations
- 2018Structure and mechanical properties of TiB 2 /TiC – Ni composites fabricated by pulse plasma sintering methodcitations
Places of action
Organizations | Location | People |
---|
article
Effect of the sintering temperature on microstructure and properties of Al2O3–Cu–Ni hybrid composites obtained by PPS
Abstract
In the present research, the influence of sintering temperature on the microstructure and properties of Al2O3–Cu–Ni hybrid composites prepared by the Pulse Plasma Sintering (PPS) technique were described. In this research, three temperatures have been selected: 1250°C, 1300°C, and 1350°C. SEM observations were carried out to determine the distribution of the metallic phase in the composite depending on the sintering temperature. The conducted experiments and microscopic observations enabled a better understanding of the phenomena occurring between the ceramic matrix and metallic phase in the obtained materials. The mechanical properties like a hardness and fracture toughness were measured. The technology applied allowed us to obtain ceramic-metal composites with a homogeneous microstructure. It was found that the sintering temperature influences the selected physical and mechanical properties of the composites produced. It was found that samples produced at 1300°C are characterized by the highest relative density and the mechanical properties.