People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fellah, Mamoun
Laboratoire de Mécanique et Procédés de Fabrication
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Improvement of photocatalytic performance and sensitive ultraviolet photodetectors using AC-ZnO/ZC-Ag2O/AZ-CuO multilayers nanocomposite prepared by spin coating method
- 2024Effect of Fe content on physical, tribological and photocatalytical properties of Ti-6Al-xFe alloys for biomedical applications
- 2024Effect of milling time on structural, physical and tribological behavior of a newly developed Ti-Nb-Zr alloy for biomedical applications
- 2023Structural and mechanical evaluation of a new Ti-Nb-Mo alloy produced by high-energy ball milling with variable milling time for biomedical applications
- 2023Improvement of photocatalytic performance and sensitive ultraviolet photodetectors using AC-ZnO/ZC-Ag2O/AZ-CuO multilayers nanocomposite prepared by spin coating method ; Verbesserung der photokatalytischen Leistung empfindlicher Ultraviolett-Photodetektoren unter Verwendung von AC-ZnO/ZC-Ag2O/AZ-CuO-Multilayer-Nanokompositen abgeschieden durch Rotationsbeschichtungcitations
- 2021Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputteringcitations
- 2019Effect of Molybdenum Content on Structural, Mechanical, and Tribological Properties of Hot Isostatically Pressed β-Type Titanium Alloys for Orthopedic Applicationscitations
- 2019Effect of annealing treatment on the microstructure, mechanical and tribological properties of chromium carbonitride coatingscitations
- 2019Enhanced structural and tribological performance of nanostructured Ti-15Nb alloy for biomedical applicationscitations
- 2018Effect of Zr content on friction and wear behavior of Cr‐Zr‐N coating systemcitations
- 2018Effect of Zr content on friction and wear behavior of Cr‐Zr‐N coating systemcitations
- 2017Characterisation of R.F. magnetron sputtered Cr-N, Cr-Zr-N and Zr-N coatingscitations
- 2017Structural and mechanical properties of Cr–Zr–N coatings with different Zr content
- 2017Effect of Replacing Vanadium by Niobium and Iron on the Tribological Behavior of HIPed Titanium Alloyscitations
- 2017Effect of Replacing Vanadium by Niobium and Iron on the Tribological Behavior of HIPed Titanium Alloyscitations
- 2016Synthesis, microstructural and tribological characterization of calcined nano-bioceramic α- al2o3, sintered at different temperatures
- 2015Friction and wear behavior of Ti-6Al-7Nb biomaterial alloycitations
- 2014Tribological behavior of biomaterial for total hip prosthesiscitations
- 2013FRICTION AND WEAR BEHAVIOUR OF Ti-6AI-7Nb BIOMATERIAL ALLOY
- 2013Friction and wear behavior of Ti-6Al-7Nb biomaterial alloycitations
Places of action
Organizations | Location | People |
---|
article
Effect of Zr content on friction and wear behavior of Cr‐Zr‐N coating system
Abstract
Nanostructured Cr‐Zr‐N thin film with different Zr content (0 to 48.8 at.%) was deposited, using an RF magnetron‐sputtering technique. The structural evolution and morphological changes were performed. The tribological performances were evaluated, using a ball‐on‐disk type Oscillating tribometer. The tests were carried out under normal loads of 2, 4 and 6 N, respectively, with an alumina ball (Al2O3) as a counter face. The results showed that the crystallite size of the Cr‐Zr‐N system was reduced to 10.8 nm at 31.8 at.% Zr content. Morphological studies of the films showed that the roughness continuously decreased with increasing Zr content, exhibiting a value of 11.2 nm at 31.8 at.% Zr. The wear rate tends to decrease with the increasing of Zr content to reach a lowest value of 1.95 × 10‐2 μm3.N.μm‐1 at 31.8 at.% Zr. The wear rate and friction coefficient were lower in the samples with 31.8 at.% Zr content. The improved friction and wear resistance were attributed to the grain refinement strengthening mechanism at 31.8 at.% of Zr.