People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eder, Martin Alexander
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Bayesian optimization-based prediction of the thermal properties from fatigue test IR imaging of composite couponscitations
- 2024In-situ and adhesive repair of continuous fiber composites using 3D printingcitations
- 2024Coupled heat transfer–crystallization analysis in continuous carbon fiber-reinforced thermoplastic composites 3D printing: simulation and experimental validation
- 2024Microstructural Evolution During Welding of High Si Solution-Strengthened Ferritic Ductile Cast Iron Using Different Filler Metalscitations
- 2024An experimentally validated thermomechanical model for a parametric study on reducing residual stress in cast iron repair welding
- 2023Corrosion surface morphology-based methodology for fatigue assessment of offshore welded structurescitations
- 2023Thermomechanical modeling and experimental study of a multi-layer cast iron repair welding for weld-induced crack predictioncitations
- 2022Effect of manufacturing defects on fatigue life of high strength steel bolts for wind turbinescitations
- 2022Corrosion Fatigue
- 2019Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfacescitations
- 2018An Improved Sub-component Fatigue Testing Method for Material Characterizationcitations
- 2018Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samplescitations
- 2015Fracture analysis of adhesive joints in wind turbine bladescitations
Places of action
Organizations | Location | People |
---|
article
Corrosion surface morphology-based methodology for fatigue assessment of offshore welded structures
Abstract
This work employed a novel corrosion-based fatigue model to determine the fatigue life of offshore welded structures to enable the fatigue assessment of welds under corrosive conditions. In addition to the material's ultimate strength, endurance limit, and stress ratio (mean stress effect), the model includes a corrosion factor concept to account for the impact of corrosion pits on the fatigue performance of welded S355 steel, which is the novel contribution in this paper. X-ray computed tomography scans of corroded S355 specimens in a salt spray chamber were characterized. Surface texture characterization was employed to obtain surface roughness, size, and aspect ratio of corrosion pits. The corrosion factor was determined based on notch and surface fatigue theories using the characterized pit size, aspect ratio, and surface roughness. Fatigue S-N curves were then predicted for critical pits and compared against the fatigue code DNVGL-RP-C203 and experimental data from the literature. The novel approach combining corrosion characterization method with corrosion-based fatigue model for the prediction of fatigue S-N curves provided a minor deviation of only 2.8% between predicted and measured data. This approach can potentially be integrated into predictive frameworks for the remaining life assessment of offshore structures.