People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hamilton, Andrew R.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Interfacial characteristics of multi-material SS316L/IN718 fabricated by laser powder bed fusion and processed by high-pressure torsion
- 2023Fatigue crack initiation and growth behavior within varying notch geometries in the low-cycle fatigue regime for FV566 turbine blade materialcitations
- 2023Fatigue crack initiation and growth behavior within varying notch geometries in the low-cycle fatigue regime for FV566 turbine blade materialcitations
- 2023Hydrated behavior of multilayer polyelectrolyte-nanoclay coatings on porous materials and demonstration of shape memory effectcitations
- 2023Hydrated behavior of multilayer polyelectrolyte-nanoclay coatings on porous materials and demonstration of shape memory effectcitations
- 2023Interfacial characteristics of austenitic 316L and martensitic 15-5PH stainless steels joined by laser powder bed fusioncitations
- 2022Effects of rescanning parameters on densification and microstructural refinement of 316L stainless steel fabricated by laser powder bed fusioncitations
- 2021Fatigue crack initiation and growth behavior in a notch with periodic overloads in the low-cycle fatigue regime of FV566 ex-service steam turbine blade materialcitations
- 2021Fatigue crack initiation and growth behavior in a notch with periodic overloads in the low-cycle fatigue regime of FV566 ex-service steam turbine blade materialcitations
- 2019Behaviour of 3D printed PLA and PLA-PHA in marine environmentscitations
- 2016Porous materials with tunable structure and mechanical properties via templated layer-by-layer assemblycitations
- 2016Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networkscitations
- 2015Melt Processing and Properties of Polyamide 6/Graphene Nanoplatelet Compositescitations
- 2015Characterisation of melt processed nanocomposites of Polyamide 6 subjected to uniaxial-drawing
- 2015Customization of mechanical properties and porosity of bone tissue scaffold materials via Layer-by-Layer assembly of polymer-nanocomposite coatingscitations
- 2013Evaluation of the anisotropic mechanical properties of reinforced polyurethane foamscitations
Places of action
Organizations | Location | People |
---|
article
Fatigue crack initiation and growth behavior within varying notch geometries in the low-cycle fatigue regime for FV566 turbine blade material
Abstract
<p>Plain bend bars made from FV566 martensitic stainless steel were extracted from the root of ex-service power plant turbine blades and several industry-relevant notch geometries were introduced. Some of the samples were shot peened. The notched bend bars were loaded plastically in the low-cycle fatigue regime and finite element (FE) modeling carried out to investigate the effects of changing notch geometry, combined with shot peening, on fatigue behaviors such as crack initiation, short crack growth, and coalescence. Shot peening damaged the notch surface, accelerating initiation behaviors, but had a lifetime-extending effect by retarding short crack growth in all tested notch geometries. At a total strain range higher than 1.2%, the lifetime extension benefit from shot peening was diminished due to compressive residual stress relaxation in the notch stress field. Notch geometry (and the associated varying constraint levels and stress/strain gradients) was found to have no notable difference on fatigue life when tested at identical notch-root strain ranges.</p>