People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farhad, Farnoosh
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Analysing the mechanism of fracture in drive pins used in magnetically controlled growth rods
- 2021Fatigue of X65 steel in the sour corrosive environment—A novel experimentation and analysis method for predicting fatigue crack initiation life from corrosion pitscitations
- 2019Fatigue behaviour of corrosion pits in X65 steel pipelinescitations
- 2019Behavior of 316L stainless steel containing corrosion pits under cyclic loadingcitations
- 2018Laboratory apparatus for in-situ corrosion fatigue testing and characterisation of fatigue cracks using X-ray micro-computed tomographycitations
- 2018Corrosion fatigue behaviour of X65 steel oil and gas pipelines
Places of action
Organizations | Location | People |
---|
article
Fatigue of X65 steel in the sour corrosive environment—A novel experimentation and analysis method for predicting fatigue crack initiation life from corrosion pits
Abstract
il and gas pipelines manufactured from API-5L Grade X65 steel are generally subjected to cyclic loading and their internal surfaces are frequently exposed to corrosive sour fluids. Exposure of pipelines to these environments often leads to localized corrosion (pitting) and decreased fatigue life. Corrosion pits are geometrical discontinuities that may promote fatigue cracking by acting as stress raisers. In order to optimize asset inspection and repair scheduling, it is important to understand the fatigue behavior of X65 steel and in particular, the ability to predict the crack initiation from corrosion pit. To achieve this level of understanding, conducting fatigue tests in an environmental condition replicating the field environment is important. This paper presents the test protocol and results of environmental fatigue testing using bespoke laboratory apparatus to undertake in situ corrosion fatigue tests in a sour corrosive environment under uniaxial loading. The environment selected represent processes that are likely to occur at internal surfaces of oil and gas pipelines exposed to production fluids. The tests were carried out on smooth samples to obtain S-N curve in this specific environment as well as on pre-pitted samples. An electrochemical method is used to create corrosion pits on the samples. Also, a model is proposed to predict the crack initiation life from corrosion pit, using a local stress-based technique, which has been validated by experimental test results. Post-test fractography was carried out by scanning electron microscopy (SEM). The performance of our approach is demonstrated. The innovation is anticipated to encourage other workers to employ similar small-scale tests requiring toxic and challenging test environments.