Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Slot, Henk

  • Google
  • 5
  • 10
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Uncertainty quantification of the failure assessment diagram for flawed steel components in BS 7910:20195citations
  • 2020Influence of material anisotropy on fatigue crack growth in C–Mn steels of existing structures6citations
  • 2018Use of HSS and VHSS in steel structures in civil and offshore engineering:Requirements regarding material propertiescitations
  • 2018Use of HSS and VHSS in steel structures in civil and offshore engineering:Requirements regarding material properties8citations
  • 2018Use of HSS and VHSS in steel structures in civil and offshore engineering8citations

Places of action

Chart of shared publication
Walters, Carey
1 / 3 shared
Maljaars, Johan
3 / 26 shared
Rózsás, Árpád
1 / 1 shared
Nicoreac, Monica
1 / 1 shared
Es, Sjors Van
2 / 2 shared
Steenbergen, Henri
3 / 3 shared
Pijpers, Richard
3 / 5 shared
Maljaars, J. Johan
1 / 5 shared
Van Es, Sjors
1 / 1 shared
Maljaars, J.
1 / 19 shared
Chart of publication period
2022
2020
2018

Co-Authors (by relevance)

  • Walters, Carey
  • Maljaars, Johan
  • Rózsás, Árpád
  • Nicoreac, Monica
  • Es, Sjors Van
  • Steenbergen, Henri
  • Pijpers, Richard
  • Maljaars, J. Johan
  • Van Es, Sjors
  • Maljaars, J.
OrganizationsLocationPeople

article

Influence of material anisotropy on fatigue crack growth in C–Mn steels of existing structures

  • Nicoreac, Monica
  • Maljaars, Johan
  • Slot, Henk
Abstract

Rolled steel plates and sections are often applied in structures in such a way that the principal load direction corresponds with the rolling direction. Examples are beams, arches, or pylons of bridges, supporting beams of ship decks, and the main elements of crane structures. However, some types of structure are subjected to a multiaxial stress state or are loaded with the main load direction perpendicular to rolling. The orientation may influence the mechanical properties. This paper studies the influence of anisotropy observed in the microstructure of rolled C–Mn steels on the tensile properties, Charpy impact values and particularly the fatigue crack growth rates. The influence of anisotropy is determined through tests performed at different orientations with respect to the rolling direction, namely, L-T, T-L and T-S orientations. Samples were taken from structures that were constructed between 25 and 50 years ago from steel grades Fe510C or St52.3 (modern equivalences S355J2 or S355N). The orientation appears to have a statistically relevant influence on Charpy impact value and fatigue crack growth rate. The anisotropy ratio, defined as the ratio between the mechanical property in a certain orientation with that of the L-T orientation, ranged between 0.30 and 0.53 for Charpy impact values. The anisotropy ratios appear correlated with the absolute Charpy value, with a correlation coefficient of ρ = −0.8. The anisotropy ratios of the crack growth in T-L and T-S orientations were 1.19 and 0.43, respectively. Anisotropy ratios for crack growth appear uncorrelated with anisotropy ratios for Charpy impact. The observed anisotropy may partially explain the difference between uniaxial and multiaxial fatigue crack growth as determined by others.

Topics
  • impedance spectroscopy
  • microstructure
  • crack
  • steel
  • fatigue