People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques, Eas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Study on out-of-plane tensile strength of angle-plied reinforced hybrid CFRP laminates using thin-plycitations
- 2022A study of the fracture mechanisms of hybrid carbon fiber reinforced polymer laminates reinforced by thin-plycitations
- 2021Determination of fracture toughness of an adhesive in civil engineering and interfacial damage analysis of carbon fiber reinforced polymer-steel structure bonded jointscitations
- 2021Novel torsion machine to test adhesive jointscitations
- 2020Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethanecitations
- 2020Geometrical optimization of adhesive joints under tensile impact loads using cohesive zone modellingcitations
- 2020Numerical study of mode I fracture toughness of carbon-fibre-reinforced plastic under an impact loadcitations
- 2020Numerical study of similar and dissimilar single lap joints under quasi-static and impact conditionscitations
- 2020Experimental and numerical study of the dynamic response of an adhesively bonded automotive structurecitations
- 2019Fatigue performance of single lap joints with CFRP and aluminium substrates prior and after hygrothermal agingcitations
- 2019Adhesive joint analysis under tensile impact loads by cohesive zone modellingcitations
- 2019Dynamic behaviour in mode I fracture toughness of CFRP as a function of temperaturecitations
- 2019A strategy to reduce delamination of adhesive joints with composite substratescitations
- 2018Improvement in impact strength of composite joints for the automotive industrycitations
- 2018Adhesives and adhesive joints under impact loadings: An overviewcitations
- 2018Mechanical behaviour of adhesively bonded composite single lap joints under quasi-static and impact conditions with variation of temperature and overlapcitations
- 2018Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industrycitations
- 2018Adhesive thickness influence on the shear fracture toughness measurements of adhesive jointscitations
- 2017Mode II fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Mode I fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Dynamic behaviour of composite adhesive joints for the automotive industrycitations
- 2015Surface treatment effect in thermoplastic rubber and natural leather for the footwear industrycitations
- 2015Effect of the surface treatment in polyurethane and natural leather for the footwear industrycitations
- 2014Effect of Cure Temperature on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesivescitations
- 2013Effect of post-cure on the glass transition temperature and mechanical properties of epoxy adhesivescitations
- 2012EFFECT OF CURE TEMPERATURE ON THE GLASS TRANSITION TEMPERATURE OF AN EPOXY ADHESIVE
Places of action
Organizations | Location | People |
---|
article
Fatigue performance of single lap joints with CFRP and aluminium substrates prior and after hygrothermal aging
Abstract
Adhesive bonding has been extensively used to join composites and aluminium alloys in the automotive industry, but a deeper understanding of its fatigue behaviour is still required. This work presents a novel evaluation of the combined performance of joints manufactured with carbon fibre reinforced plastic (CFRP) and aluminium substrates subjected to fatigue loads in the unaged, hygrothermally aged, and dried after hygrothermal aging states. The experimental results allowed to conclude that the fatigue performance of joints can be affected by changes induced by the drying process or losses in the interface strength and that dissimilar combination of substrates sustains higher number of cycles to failure. The fatigue performance of joints with dissimilar substrates was found to be better than that of joints with similar substrates, which can be attributed to the lower stresses acting on the adhesive layer. The presence of water has also noticeably changed the fatigue performance of joints with dissimilar substrates.