People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Narynbek Ulu, Kubat
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Effects of acrylonitrile content and hydrogenation on fatigue behaviour of HNBR
Abstract
International audience ; Abstract The influence of acrylonitrile (ACN) content and hydrogenation on the fatigue properties of HNBR is investigated. HNBR blends consist of different quantities of acrylonitrile (24, 36, and 44 wt%) and per cent hydrogenation (91%, 96%, and 99%), and a composite of two blends of HNBR with 24 and 44 wt% ACN for an average of 36 wt% . A comprehensive experimental campaign is carried out with fatigue life and crack propagation testing at 120°C. Afterwards, fatigue damage is analysed thanks to both optical and scanning electron microscopy. The results of the three experimental approaches demonstrate that HNBR with median ACN content (36 wt%) and median hydrogenation (96%) has the best fatigue resistance. In general, the fatigue resistance decreases in the following order: for ACN—36 to 44 to 24 wt%, and for hydrogenation—96% to 99% to 91%. The composite blend also has lower fatigue resistance than a regular HNBR blend.