People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferreirós, Pedro A.
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature watercitations
- 2023Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy
- 2023VNbCrMo refractory high-entropy alloy for nuclear applicationscitations
- 2023Chromium-based bcc-superalloys strengthened by iron supplementscitations
- 2022Influence of precipitate and grain sizes on the brittle-to-ductile transition in Fe–Al–V bcc-L21 ferritic superalloyscitations
- 2022Study of Microstructure, Hydrogen Solubility, and Corrosion of Ta-Modified Zr–1Nb Alloys for Nuclear Applicationscitations
- 2021Effects of thermo-mechanical process on phase transitions, hydrogen solubility and corrosion of Ta-modified Zr-1Nb alloyscitations
- 2020Accurate quantitative EDS-TEM analysis of precipitates and matrix in equilibrium (α+β) Zr–1Nb alloys with Ta additioncitations
- 2019Effect of Ti additions on phase transitions, lattice misfit, coarsening, and hardening mechanisms in a Fe2AlV-strengthened ferritic alloycitations
- 2018Método innovador de ensayos de impacto en altas temperaturas aplicado en aceros al carbono
- 2018High-temperature testing in a Charpy impact pendulum using in-situ Joule heating of the specimencitations
- 2018Zirconium alloys with improved corrosion resistance and service temperature for use in the fuel cladding and core structural parts of a nuclear reactor
- 2018Efecto de la sustitución de V por Ti sobre las temperaturas de transformación de fase y el desajuste de red matriz/precipitado en la superaleación 76Fe-12Al-12V
- 2017Impact toughness transition temperature of ferritic Fe-Al-V alloy with strengthening Fe2AlV precipitatescitations
- 2017Coarsening process and precipitation hardening in Fe2AlV-strengthened ferritic Fe76Al12V12 alloycitations
- 2014Characterization of microstructures and age hardening of Fe 1-2xAlxVx alloyscitations
Places of action
Organizations | Location | People |
---|
article
High-temperature testing in a Charpy impact pendulum using in-situ Joule heating of the specimen
Abstract
In this paper, an innovative approach to high-temperature testing of subsize Charpy V notched specimens is introduced. The design concept is to heat the specimen on the specimen piece supports up to the moment of impact by flowing AC electric current through it. This approach allows a very accurate centring of the specimen with respect to the anvils and the control of their temperature up to the moment of impact. The temperature profile measured by using the in-situ heating device on ferritic steel specimen over the notch temperature range of 400°C < T < 750°C is presented. The impact energy was measured at different temperatures going through the eutectoid phase transformation of the ferritic steel specimens, with different carbon composition, to investigate the validity of the instrumented in-situ heating method. The method is particularly appropriate to estimate the ductile brittle transition that occurs at high temperature in some metallic alloy systems. Also, its wide range of specimen heating rate provides new research tools for studying, for example, the intermediate temperature embrittlement of metals and alloys.