Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marcomini, Natalia

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effects of alpha‐tocopherol antioxidant on fracture strength and adhesion of endodontically treated teeth restored after dental bleaching4citations

Places of action

Chart of shared publication
Fernandez, Eduardo
1 / 7 shared
Dantas, Andréa Abi Rached
1 / 2 shared
Costa, Joatan
1 / 1 shared
Da Costa Albaricci, Maria Carolina
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Fernandez, Eduardo
  • Dantas, Andréa Abi Rached
  • Costa, Joatan
  • Da Costa Albaricci, Maria Carolina
OrganizationsLocationPeople

article

Effects of alpha‐tocopherol antioxidant on fracture strength and adhesion of endodontically treated teeth restored after dental bleaching

  • Fernandez, Eduardo
  • Dantas, Andréa Abi Rached
  • Marcomini, Natalia
  • Costa, Joatan
  • Da Costa Albaricci, Maria Carolina
Abstract

<jats:title>Abstract</jats:title><jats:p>This study evaluated the effect of different concentrations of alpha‐tocopherol in gel form on fracture strength, hybrid layer formation, and microtensile bond strength of endodontically treated teeth bleached with 40% hydrogen peroxide (H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>). Sixty bovine incisors were randomized into one of six groups (<jats:italic>n</jats:italic> = 10 incisors per group) defined by the interventions carried out after endodontic treatment. In the control group, no additional intervention was carried out, while all teeth in the five intervention groups were bleached with 40% H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> and subsequently treated with alpha‐tocopherol at concentrations of 15% (15AT), 20% (20AT), or 25% (25AT), with 10% sodium ascorbate (10SA), or with nothing (40HP). Fracture strength was evaluated in a mechanical testing machine, hybrid layer formation was assessed using scanning electron microscopy, and bond strength was determined using microtensile bond‐strength testing. Data were analyzed using Kruskal–Wallis and Dunn's tests. No statistically significant difference regarding fracture strength was observed among groups. Hybrid layer formation was greater in the 15AT group than in groups 40HP and 10SA. Teeth in groups 15AT, 20AT, and 25AT demonstrated higher bond strength than teeth in groups 40HP and 10SA. Alpha‐tocopherol, preferably at 15%, effectively reverses the deleterious effects, of bleaching, on hybrid layer formation and bond strength to dentin.</jats:p>

Topics
  • scanning electron microscopy
  • strength
  • Sodium
  • Hydrogen