Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bergman, Arthur

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Study of the ketohexokinase inhibitor PF-06835919 as a clinical cytochrome P450 3A inducercitations

Places of action

Chart of shared publication
Vourvahis, Manoli
1 / 1 shared
Lin, Jian
1 / 4 shared
Qiu, Ruolun
1 / 1 shared
Fonseca, Kari
1 / 1 shared
Rodrigues, David
1 / 3 shared
Tess, David
1 / 1 shared
Newman, Lauren
1 / 1 shared
Fahmy, Alia
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Vourvahis, Manoli
  • Lin, Jian
  • Qiu, Ruolun
  • Fonseca, Kari
  • Rodrigues, David
  • Tess, David
  • Newman, Lauren
  • Fahmy, Alia
OrganizationsLocationPeople

article

Study of the ketohexokinase inhibitor PF-06835919 as a clinical cytochrome P450 3A inducer

  • Vourvahis, Manoli
  • Lin, Jian
  • Qiu, Ruolun
  • Fonseca, Kari
  • Bergman, Arthur
  • Rodrigues, David
  • Tess, David
  • Newman, Lauren
  • Fahmy, Alia
Abstract

PF-06835919, a ketohexokinase inhibitor, presented as an inducer of cytochrome P450 3A4 (CYP3A4) in vitro (human primary hepatocytes), and static mechanistic modeling exercises predicted significant induction in vivo (oral midazolam area under the plasma concentration-time curve [AUC] ratio [AUCR] = 0.23–0.79). Therefore, a drug–drug interaction study was conducted to evaluate the effect of multiple doses of PF-06835919 (300 mg once daily × 10 days; N = 10 healthy participants) on the pharmacokinetics of a single oral midazolam 7.5 mg dose. The adjusted geometric means for midazolam AUC and its maximal plasma concentration were similar following co-administration with PF-06835919 (vs. midazolam administration alone), with ratios of the adjusted geometric means (90% confidence interval [CI]) of 97.6% (90% CI: 79.9%–119%) and 98.9% (90% CI: 76.4%–128%), respectively, suggesting there was minimal effect of PF-06835919 on midazolam pharmacokinetics. Lack of CYP3A4 induction was confirmed after the preparation of subject plasma-derived small extracellular vesicles (sEVs) and conducting proteomic and activity (midazolam 1′-hydroxylase) analysis. Consistent with the midazolam AUCR observed, the CYP3A4 protein expression fold-induction (geometric mean, 90% CI) was low in liver (0.9, 90% CI: 0.7–1.2) and non-liver (0.9, 90% CI: 0.7-1.2) sEVs (predicted AUCR = 1.0, 90% CI: 0.9–1.2). Likewise, minimal induction of CYP3A4 activity (geometric mean, 90% CI) in both liver (1.1, 90% CI: 0.9–1.3) and non-liver (0.9, 90% CI: 0.5-1.5) sEVs was evident (predicted AUCR = 0.9, 90% CI: 0.6-1.4). The results showcase the integrated use of an oral CYP3A probe (midazolam) and plasma-derived sEVs to assess a drug candidate as inducer.

Topics
  • chemical ionisation