Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Strasding, Malin

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023The influence of titanium‐base abutment geometry and height on mechanical stability of implant‐supported single crowns5citations

Places of action

Chart of shared publication
Fehmer, Vincent
1 / 1 shared
Karasan, Duygu
1 / 3 shared
Zarauz, Cristina
1 / 1 shared
Pitta, Joao
1 / 2 shared
Sailer, Irena
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fehmer, Vincent
  • Karasan, Duygu
  • Zarauz, Cristina
  • Pitta, Joao
  • Sailer, Irena
OrganizationsLocationPeople

article

The influence of titanium‐base abutment geometry and height on mechanical stability of implant‐supported single crowns

  • Fehmer, Vincent
  • Karasan, Duygu
  • Zarauz, Cristina
  • Pitta, Joao
  • Strasding, Malin
  • Sailer, Irena
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Aim</jats:title><jats:p>This study aimed to investigate the influence of titanium base (ti‐base) abutment macro‐ and micro‐geometry on the mechanical stability of polymer‐infiltrated ceramic network (PICN) screw‐retained implant‐supported single crowns (iSCs).</jats:p></jats:sec><jats:sec><jats:title>Materials and Methods</jats:title><jats:p>Twelve specimens per group were used, comprising six different implant/ti‐base abutment combinations restored with PICN iSCs: Nb‐T (gingival height [GH]: 1.5 mm, prosthetic height [PH]: 4.3 mm), CC (GH: 0.8 mm, PH: 4.3 mm), CC‐P (GH: 0.8 mm, PH: 7 mm), Nb‐V (GH: 1.5 mm, PH: 6 mm), St (GH: 1.5 mm, PH: 5.5 mm), and Th (GH: 0.5 mm, PH: 9 mm). The specimens underwent thermo‐mechanical aging, and those that survived were subsequently subjected to static loading until failure. The data were analyzed using a one‐way ANOVA test followed by Tukey post hoc test (<jats:italic>α</jats:italic> = .05).</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>All specimens survived thermo‐mechanical aging without complications, namely, visible cracks, debonding, or screw loosening. Th group demonstrated the highest strength values among all the groups, with significant differences compared to Nb‐T (<jats:italic>p</jats:italic> &lt; .05), CC (<jats:italic>p</jats:italic> &lt; .001), and St (<jats:italic>p</jats:italic> &lt; .001). Additionally, CC‐P group exhibited significantly superior fracture strength results compared to CC (<jats:italic>p</jats:italic> &lt; .05) and St (<jats:italic>p</jats:italic> &lt; .05).</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The choice of ti‐base, particularly prosthetic height, had a significant influence on fracture resistance of PICN iSCs. Nevertheless, the height or geometrical features of the ti‐base did not exhibit a significant influence on the mechanical behavior of the iSC/ti‐base assembly under thermomechanical loading, as all specimens withstood the aging without complication or failure.</jats:p></jats:sec>

Topics
  • polymer
  • crack
  • strength
  • titanium
  • aging
  • ceramic
  • size-exclusion chromatography
  • aging