Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kotowski, Jakub

  • Google
  • 3
  • 26
  • 37

University of Warsaw

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Using 3D printing technology to monitor damage in GFRPscitations
  • 2024In‐depth study of a speiss/matte sample from Castillo de Huarmey, North Coast of Peru, and its implications for the pre‐Columbian production of arsenic bronze in the Central Andescitations
  • 2019Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning37citations

Places of action

Chart of shared publication
Durałek, Paweł
1 / 8 shared
Kozera, Paulina
1 / 14 shared
Madia, Evgenia
1 / 2 shared
Tzortzinis, Georgios
1 / 5 shared
Boczkowska, Anna
1 / 87 shared
Demski, Szymon
1 / 5 shared
Misiak, Michał
1 / 7 shared
Latko-Durałek, Paulina
1 / 19 shared
Dydek, Kamil
1 / 23 shared
Gude, Mike
1 / 775 shared
Kałaska, Maciej
1 / 1 shared
Rizzuto, Branden Cesare
1 / 1 shared
Sierpień, Paula
1 / 1 shared
Środek, Dorota
1 / 2 shared
Kaproń, Grzegorz
1 / 1 shared
Marciniakmaliszewska, Beata
1 / 1 shared
Warchulski, Rafał
1 / 3 shared
Pisarek, Marcin
1 / 16 shared
Przadkagiersz, Patrycja
1 / 1 shared
Giersz, Miłosz
1 / 1 shared
Jokubauskas, Petras
1 / 2 shared
Almohammadi, Khalid
1 / 1 shared
Anysz, Hubert Jerzy
1 / 5 shared
Tarawneh, Ahmad S.
1 / 1 shared
Hassanat, Ahmad
1 / 1 shared
Narloch, Piotr Leon
1 / 4 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Durałek, Paweł
  • Kozera, Paulina
  • Madia, Evgenia
  • Tzortzinis, Georgios
  • Boczkowska, Anna
  • Demski, Szymon
  • Misiak, Michał
  • Latko-Durałek, Paulina
  • Dydek, Kamil
  • Gude, Mike
  • Kałaska, Maciej
  • Rizzuto, Branden Cesare
  • Sierpień, Paula
  • Środek, Dorota
  • Kaproń, Grzegorz
  • Marciniakmaliszewska, Beata
  • Warchulski, Rafał
  • Pisarek, Marcin
  • Przadkagiersz, Patrycja
  • Giersz, Miłosz
  • Jokubauskas, Petras
  • Almohammadi, Khalid
  • Anysz, Hubert Jerzy
  • Tarawneh, Ahmad S.
  • Hassanat, Ahmad
  • Narloch, Piotr Leon
OrganizationsLocationPeople

article

In‐depth study of a speiss/matte sample from Castillo de Huarmey, North Coast of Peru, and its implications for the pre‐Columbian production of arsenic bronze in the Central Andes

  • Kałaska, Maciej
  • Rizzuto, Branden Cesare
  • Sierpień, Paula
  • Środek, Dorota
  • Kaproń, Grzegorz
  • Marciniakmaliszewska, Beata
  • Warchulski, Rafał
  • Pisarek, Marcin
  • Kotowski, Jakub
  • Przadkagiersz, Patrycja
  • Giersz, Miłosz
  • Jokubauskas, Petras
Abstract

<jats:title>Abstract</jats:title><jats:p>This study aims to characterize the phase composition and chemistry of the speiss/matte sample from the Metallurgist's Burial at Castillo de Huarmey and to use the information derived from these analyses to infer the temperatures, furnace conditions, and ores associated with the smelting processes, which created the speiss/matte sample. For this purpose, a number of geochemical analyses were performed on the spies/matte fragment: analysis of the general chemical composition (handheld X‐ray fluorescence spectrometry [hhXRF], X‐ray photoelectron spectroscopy [XPS]), analysis of the chemical composition in the micro area (field emission scanning electron microscope with an energy dispersive spectroscopy detector [FE‐SEM‐EDS], field emission electron probe microanalysis [FE‐EPMA]), analysis of the mineral composition (X‐ray diffraction [XRD]), and analysis of the phase composition (Raman spectroscopy). Chemical and mineralogical analyses of the speiss/matte specimen determined that the specimen is composed of distinct arsenide, arsenate, sulfide, and glass phases. During the smelting process, the charge material consisted mainly of Cu, Fe, and As sulfides. Arsenopyrite is the most likely candidate as the mineral source of arsenic. In addition, temperatures of at least 1200°C were achieved during the smelting process, with smelting occurring over a relatively short timeframe given that effective density separation of speiss and matte phases was not achieved.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • mineral
  • phase
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • glass
  • glass
  • chemical composition
  • Energy-dispersive X-ray spectroscopy
  • Raman spectroscopy
  • bronze
  • spectrometry
  • Arsenic
  • electron probe micro analysis