Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Larsen, Lau

  • Google
  • 1
  • 6
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018A comparative study on basophil activation test, histamine release assay, and passive sensitization histamine release assay in the diagnosis of peanut allergy50citations

Places of action

Chart of shared publication
Mills, E. N. Clare
1 / 2 shared
Juel-Berg, N.
1 / 1 shared
Hansen, K. S.
1 / 4 shared
Poulsen, Lars K.
1 / 1 shared
Jensen, B. M.
1 / 1 shared
Ree, R. Van
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Mills, E. N. Clare
  • Juel-Berg, N.
  • Hansen, K. S.
  • Poulsen, Lars K.
  • Jensen, B. M.
  • Ree, R. Van
OrganizationsLocationPeople

article

A comparative study on basophil activation test, histamine release assay, and passive sensitization histamine release assay in the diagnosis of peanut allergy

  • Mills, E. N. Clare
  • Juel-Berg, N.
  • Hansen, K. S.
  • Larsen, Lau
  • Poulsen, Lars K.
  • Jensen, B. M.
  • Ree, R. Van
Abstract

<p>BACKGROUND: Allergy can be diagnosed using basophil tests. Several methods measuring basophil activation are available. This study aimed at comparing basophil activation test (BAT), histamine release assay (HR), and passive sensitization histamine release assay (passive HR) in the diagnosis of peanut allergy.</p><p>METHODS: BAT, HR, and passive HR were performed on 11 peanut-allergic and 14 nonallergic subjects. Blood was incubated with peanut extract or anti-IgE and tests were performed as follows: BAT-CD63 upregulation was assessed by flow cytometry; HR-released histamine was quantified by a glass fiber-based fluorometric method; passive HR-IgE-stripped donor basophils were incubated with participants' serum and histamine release was quantified as HR.</p><p>RESULTS: CDsens, a measure of basophil allergen sensitivity, was significantly higher for BAT (80.1±17.4) compared to HR (23.4±10.31) and passive HR (11.1±2.0). BAT, HR, and passive HR had a clinical sensitivity of 100%, 100%, and 82% and specificity of 100%, 100%, and 100%, respectively, when excluding inconclusive results. BAT identified 11 of 11 allergic patients, HR 10, and passive HR 9. Likewise, BAT recognized 12 of 14 nonallergic subjects, HR 10, and passive HR 13. However, the tests' diagnostic performances were not statistically different. Interestingly, nonreleasers in HR but not in BAT had lower basophil count compared to releasers (249 vs 630 counts/min).</p><p>CONCLUSION: BAT displayed a significantly higher CDsens compared to HR and passive HR. The basophil tests' diagnostic performances were not significantly different. Still, BAT could diagnose subjects with low basophil number in contrast to HR.</p>

Topics
  • glass
  • glass
  • activation