People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bleay, Stephen
London South Bank University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Dynamics and mechanism of the physical developer process for visualization of latent fingerprints on paper.citations
- 2021The effect of corrosive substances on fingermark recovery: a pilot studycitations
- 2016Visualisation of latent fingermarks on polymer banknotes using copper vacuum metal depositioncitations
- 2014A comparison of the use of vacuum metal deposition versus cyanoacrylate fuming for visualisation of fingermarks and grab impressions on fabricscitations
- 2014Latent Fingerprint Visualization using a Scanning Kelvin Probe in Conjunction with Vacuum Metal Depositioncitations
- 2014Case study
- 2013Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions.citations
- 2013Visualisation of fingermarks and grab impressions on dark fabrics using silver vacuum metal depositioncitations
- 2012Determination of the deposition order of overlapping latent fingerprints and inks using secondary ion mass spectrometry.citations
- 2011Visualisation of fingermarks and grab impressions on fabrics. Part 1: gold/zinc vacuum metal depositioncitations
- 2002Mechanical behaviour of circular and triangular glass fibres and their compositescitations
Places of action
Organizations | Location | People |
---|
article
Latent Fingerprint Visualization using a Scanning Kelvin Probe in Conjunction with Vacuum Metal Deposition
Abstract
<p>The application of vacuum metal deposition before scanning Kelvin probe visualization of fingerprints is investigated. The potential contrast between fingerprint ridges and furrows is maximized by the use of silver deposition for non-noble metals and gold-zinc deposition for noble metals. The higher susceptibility of eccrine fingerprints to vacuum metal overdeposition is confirmed. Additionally, fingerprints are best developed individually and by building the metal deposition slowly to protect against overdevelopment and variation in the rate of metal condensation. The progress of the metal deposition can be monitored using the scanning Kelvin probe by reference to the change in potential and continuity of the new potential on the surface. The use of acetic acid solution for the recovery of overVMD-developed samples is shown not to be useful. Applying the metal deposition has the additional prospect of increasing surface conductivity and homogeneity and both can aid fingerprint visualization using the scanning Kelvin probe.</p>