People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Morais, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Unveiling the Antifouling Performance of Different Marine Surfaces and Their Effect on the Development and Structure of Cyanobacterial Biofilmscitations
- 2021Developing New Marine Antifouling Surfaces: Learning from Single-Strain Laboratory Testscitations
- 2020The Relative Importance of Shear Forces and Surface Hydrophobicity on Biofilm Formation by Coccoid Cyanobacteriacitations
- 2020Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approachcitations
- 2020Experimental Assessment of the Performance of Two Marine Coatings to Curb Biofilm Formation of Microfoulerscitations
- 2019Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditionscitations
- 2009Measurement of the shear properties of clear wood by the Arcan testcitations
Places of action
Organizations | Location | People |
---|
article
Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditions
Abstract
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40s(-1)) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.