People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larsen, Niels Bent
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022High Resolution Dual Material Stereolithography for Monolithic Microdevicescitations
- 2022Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Molding
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2015Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection moldingcitations
- 2013Injection molding of high aspect ratio sub-100 nm nanostructurescitations
- 2013Designing CAF-adjuvanted dry powder vaccinescitations
- 2012A Platform for Functional Conductive Polymers
- 2012Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Registercitations
- 2011Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer filmcitations
- 2011Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experimentscitations
- 2011Microwave assisted click chemistry on a conductive polymer filmcitations
- 2011Selective gas sensing for photonic crystal lasers
- 2010Fast prototyping of injection molded polymer microfluidic chipscitations
- 2010Nanostructures for all-polymer microfluidic systemscitations
- 2010“Electro-Click” on Conducting Polymer Films
- 2008Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate
- 2008Conductive Polymer Functionalization by Click Chemistrycitations
- 2007Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stampingcitations
- 2006On the Injection Molding of Nanostructured Polymer Surfacescitations
- 2001Surface morphology of PS-PDMS diblock copolymer filmscitations
Places of action
Organizations | Location | People |
---|
document
3D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imaging
Abstract
This study evaluates the use of 3D printed phantoms for super-resolution ultrasound imaging (SRI) algorithm calibration.Stereolithography is used for printing calibration phantoms containing eight randomly placed scatterers of nominal size 205 µm × 205 µm × 200 µm. The purpose is to provide a stable reference for validating new ultrasonic imaging techniques such as SRI. SRI algorithm calibration is demonstrated by imaging a phantom using a λ/2 pitch 3 MHz 62+62 row-column addressed (RCA) ultrasound probe. As the imaging wavelength is larger than the dimensions of the scatterers, they will appear as single point spread functions in the generated volumes. The scatterers are placed with a minimum separation of 3 mm to avoid overlap of the point spread functions of the scatterers. 640 volumes containing the phantom features are generated, with an intervolume uniaxial movement of 12.5 µm, emulating a flow velocity of 2 mm/s at a volume frequency of 160 Hz. A superresolution pipeline is applied to the obtained volumes to localise the positions of the scatterers and track them across the 640 volumes. The standard deviation of the variation in the scatterer positions along each track is used as an estimate of the precision of the super-resolution algorithm, and was found to be between the two limiting estimates of (x, y, z) = (17.7, 27.6, 9.5) µm and (x, y, z) = (17.3, 19.3, 8.7) µm. In conclusion, this study demonstrates the use of 3D printed phantoms for determining the precision of super-resolution algorithms.