People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Jørgen Arendt
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022A Hand-Held 190+190 Row–Column Addressed CMUT Probe for Volumetric Imagingcitations
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 2020Real Time Synthetic Aperture and Plane Wave Ultrasound Imaging with the Xilinx VERSAL™ SIMD-VLIW Architecturecitations
- 2019Imaging Performance for Two Row–Column Arrayscitations
- 2019188+188 Row–Column Addressed CMUT Transducer for Super Resolution Imagingcitations
- 2019CMUT Electrode Resistance Design: Modelling and Experimental Verification by a Row-Column Arraycitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2018Probe development of CMUT and PZT row-column-addressed 2-D arrayscitations
- 2018Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lenscitations
- 2018Design of a novel zig-zag 192+192 Row Column Addressed Array Transducer: A simulation study.citations
- 2017Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners
- 2017Real-time Implementation of Synthetic Aperture Vector Flow Imaging on a Consumer-level Tabletcitations
- 2017Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensionscitations
- 20163-D Vector Flow Using a Row-Column Addressed CMUT Arraycitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodization:Part II: Transducer Fabrication and Experimental Resultscitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodizationcitations
- 2012Multilayer piezoelectric transducer models combined with Field IIcitations
- 2011Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System
- 2010Simulation of High Quality Ultrasound Imaging
- 2009Parameter sensitivity study of a Field II multilayer transducer model on a convex transducercitations
- 2007Medical ultrasound imagingcitations
- 2004Preliminary In-Vivo Evaluation of Convex Array Synthetic Aperture Imagingcitations
- 2003Delay generation methods with reduced memory requirementscitations
Places of action
Organizations | Location | People |
---|
document
Simulation of High Quality Ultrasound Imaging
Abstract
This paper investigates if the influence on image quality using physical transducers can be simulated with an sufficient accuracy to reveal system performance. The influence is investigated in a comparative study between Synthetic Aperture Sequential Beamformation (SASB) and Dynamic Receive Focus (DRF). The study is performed as a series of simulations and validated by measurements. The influence from individual element impulse response, phase, and amplitude deviations are quantized by the lateral resolution (LR) at Full Width at Half Maximum (FWHM), Full Width at One-Tenth Maximum (FWOTM), and at Full Width at One-Hundredth Maximum (FWOHM) of 9 points spread functions resulting from evenly distributed point targets at depths ranging from 10 mm to 90 mm. The results are documented for a 64 channel system, using a 192 element linear array transducer model. A physical BK Medical 8804 transducer is modeled by incorporating measured element pulse echo responses into the simulation software. Validation is performed through measurements on a water phantom with three metal wires, each with a diameter of 0.07 mm. Results show that when comparing measurement and simulation, the lateral beam profile using SASB can be estimated with a correlation coefficient of 0.97. Further, it is shown that SASB successfully maintains a constant LR though depth at FWHM, and is a factor of 2.3 better than DRF at 80 mm. However, when using SASB the LR at FWOHM is affected by non-ideal element responses. Introducing amplitude and phase compensation, the LR at FWOHM improves from 6.3 mm to 4.7 mm and is a factor of 2.2 better than DRF. This study has shown that individual element impulse response, phase, and amplitude deviations are important to include in simulated system performance evaluations. Furthermore, it is shown that SASB provides a constant LR through depth and has improved resolution and contrast compared to DRF.