Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hunter, Alan J.

  • Google
  • 2
  • 8
  • 40

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Ultrasonic Transducers made from Freeze-Cast Porous Piezoceramics10citations
  • 2012Monte Carlo inversion of ultrasonic array data to map anisotropic weld properties30citations

Places of action

Chart of shared publication
Bowen, Christopher R.
1 / 96 shared
Rymansaib, Zuhayr
1 / 2 shared
Zhang, Yan
1 / 18 shared
Kurt, Polat
1 / 1 shared
Roscow, James
1 / 18 shared
Drinkwater, Bw
1 / 25 shared
Wilcox, Pd
1 / 20 shared
Zhang, Jie
1 / 7 shared
Chart of publication period
2022
2012

Co-Authors (by relevance)

  • Bowen, Christopher R.
  • Rymansaib, Zuhayr
  • Zhang, Yan
  • Kurt, Polat
  • Roscow, James
  • Drinkwater, Bw
  • Wilcox, Pd
  • Zhang, Jie
OrganizationsLocationPeople

article

Ultrasonic Transducers made from Freeze-Cast Porous Piezoceramics

  • Hunter, Alan J.
  • Bowen, Christopher R.
  • Rymansaib, Zuhayr
  • Zhang, Yan
  • Kurt, Polat
  • Roscow, James
Abstract

Porous and composite piezoelectric ceramics are of interest for underwater ultrasonic transducers due to their improved voltage sensitivity and acoustic matching with water, compared with their dense counterparts. Commonly, these materials are fabricated by dice-and-fill of sintered blocks of polycrystalline piezoceramic, which results in a high volume of waste. The freeze-casting technique offers a low waste and scalable alternative to the dice-and-fill method to produce porous piezoceramics with highly orientated, anisometric pores. In this article, we have fabricated underwater ultrasonic transducers from freeze-cast lead zirconate titanate (PZT) with a range of porosities. The porous PZT samples were characterized in terms of their piezoelectric and dielectric properties before being encapsulated for acoustic performance testing in water. Off resonance, the on-axis receive sensitivity of the manufactured devices was approximately-200 ± 10 dB re 1 V μ Pa; the transmit voltage response (TVR) was in the range of approximately 115 ± 5 dB re 1 μ Pa/V at 60 kHz to 132.5 ± 2.5 dB re 1 μ Pa/{V} at 180 kHz. The most porous transducer devices (0.51, 0.43, and 0.33 pore fraction) exhibited primarily a thickness mode resonance, whereas the least porous transducers (0.29 pore fraction and dense benchmark) exhibited an undesired radial mode, which was observed as an additional resonant peak in the electrical impedance measurements and lateral off-axis lobes in the acoustic beampatterns. Our results show that the acoustic sensitivities and TVRs of the porous freeze-cast transducers are comparable to those of a dense pressed transducer. However, the freeze-cast transducers with porosity exceeding 0.30 pore fraction were shown to achieve an effective structure with aligned porosity that suppressed undesired radial mode resonances.

Topics
  • porous
  • pore
  • composite
  • ultrasonic
  • casting
  • porosity
  • ceramic
  • aligned