People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engholm, Mathias
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022A Hand-Held 190+190 Row–Column Addressed CMUT Probe for Volumetric Imagingcitations
- 2020Pull-in Analysis of CMUT Elementscitations
- 2020Large Scale High Voltage 192+192 Row-Column Addressed CMUTs Made with Anodic Bondingcitations
- 2020Electrical Insulation of CMUT Elements Using DREM and Lappingcitations
- 2020Electrical Insulation of CMUT Elements Using DREM and Lappingcitations
- 2019Imaging Performance for Two Row–Column Arrayscitations
- 2019188+188 Row–Column Addressed CMUT Transducer for Super Resolution Imagingcitations
- 2019CMUT Electrode Resistance Design: Modelling and Experimental Verification by a Row-Column Arraycitations
- 2018Probe development of CMUT and PZT row-column-addressed 2-D arrayscitations
- 2018Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lenscitations
- 2018Capacitive Micromachined Ultrasonic Transducers for 3-D Imaging
- 2018Design of a novel zig-zag 192+192 Row Column Addressed Array Transducer: A simulation study.citations
- 2017Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensionscitations
- 20163-D Vector Flow Using a Row-Column Addressed CMUT Arraycitations
Places of action
Organizations | Location | People |
---|
article
Imaging Performance for Two Row–Column Arrays
Abstract
This study evaluates the volumetric imaging performance of two prototyped 62+62 row–column-addressed (RCA) 2-D array transducer probes using three Synthetic Aperture Imaging (SAI) emission sequences and two different beamsformers. The probes are fabricated using capacitive micromachined ultrasonic transducer (CMUT), and piezoelectric transducer (PZT) technology. Both have integrated apodization to reduce ghost echoes and are designed with similar acoustical features i.e., 3MHz center frequency, l/2-pitch, and 24.8×24.8mm2 active footprint. Raw RF data are obtained using an experimental research ultrasound scanner, SARUS. The SAI sequences are designed for imaging down to 14 cm at a volume rate of 88 Hz. Two beamforming methods: Spatial matched filtering and rowcolumn adapted delay-and-sum are used for beamforming the RF data. The imaging quality is investigated through simulations and phantom measurements. Both probes on average have similar lateral full-width at half-maximum (FWHM) values, but the PZT probe has 20% smaller cystic resolution values and 70% larger contrast-to-noise ratio compared to the CMUT probe. The CMUT probe can penetrate down to 15 cm, and the PZT probe down to 30 cm. The CMUT probe has 17% smaller axial FWHM values. The matched filter focusing shows and improved B-mode image for measurements on a cyst phantom with an improved speckle pattern and better visualization of deeper lying cysts. The results of this study demonstrate the potentials of RCA 2-D arrays against fully addressed 2-D arrays, which are low channel count (e.g. 124 instead of 3,844), low acoustic intensity (MI ≤0.88 and Ispta ≤5.5mW/cm2), and high penetration depth (down to 30 cm), which makes 3-D imaging at high volume rates possible with equipment in the price range of conventional 2-D imaging.