People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mulholland, Anthony J.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2021Modelling of ultrasonic waves in layered elastic heterogeneous materialscitations
- 2020Effective Grain Orientation Mapping of Complex and Locally Anisotropic Media for Improved Imaging in Ultrasonic Non-Destructive Testingcitations
- 2019Analysis of a fractal ultrasonic transducer with a range of piezoelectric length scalescitations
- 2018Linear ultrasonic array design using cantor set fractal geometrycitations
- 2018Broadband 1-3 piezoelectric composite transducer design using Sierpinski Gasket fractal geometrycitations
- 2017Renormalisation analysis of a composite ultrasonic transducer with a fractal architecturecitations
- 2017Pipe organ air-coupled broad bandwidth transducer
- 2017A weak-inertia mathematical model of bubble growth in a polymer foamcitations
- 2017A nonlinear elasticity approach to modelling the collapse of a shelled microbubblecitations
- 2017Linear ultrasonic array incorporating a Cantor Set fractal element configuration
- 2016Investigating the performance of a fractal ultrasonic transducer under varying system conditionscitations
- 2016Improving the operational bandwidth of a 1-3 piezoelectric composite transducer using Sierpinski Gasket fractal geometry
- 2015Dynamical model of an oscillating shelled microbubble
- 2015System modeling and device development for passive acoustic monitoring of a particulate-liquid processcitations
- 2015A finite element approach to modelling fractal ultrasonic transducerscitations
- 2015A model-based approach to crack sizing with ultrasonic arrayscitations
- 2015A Composite Ultrasonic Transducer with a Fractal Architecture
- 2012Ultrasonic wave propagation in heterogenous media
- 2012The use of fractal geometry in the design of piezoelectric ultrasonic transducerscitations
- 2010Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layerscitations
- 2010An electrostatic ultrasonic transducer incorporating resonating conduits
- 2009Theoretical analysis of ultrasonic vibration spectra from multiple particle-plate impactscitations
- 2009Estimating particle concentration using passive ultrasonic measurement of impact vibrationscitations
- 2009The causal differential scattering approach to calculating the effective properties of random composite materials with a particle size distribution
- 2008Harmonic analysis of lossy piezoelectric composite transducers using the plane wave expansion methodcitations
- 2008Analysis of ultrasonic transducers with fractal architecturecitations
- 2008Enhancing the performance of piezoelectric ultrasound transducers by the use of multiple matching layerscitations
- 2008Particle sizing using passive ultrasonic measurement of particle-wall impact vibrationscitations
- 2007Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducerscitations
- 2000Wave propagation in 0-3/3-3 connectivity composites with complex microstructurecitations
Places of action
Organizations | Location | People |
---|
article
Broadband 1-3 piezoelectric composite transducer design using Sierpinski Gasket fractal geometry
Abstract
Wider operational bandwidth is an important requirement of an ultrasound transducer across many applications. In nature, it can be observed that several hearing organs possess a broad operating bandwidth by having a varying length scales structure.Moreover, conventional 1-3 piezoelectric composite transducers have been widely recognized for their wider bandwidth over their piezoelectric ceramic counterparts. In this paper, a novel 1-3 piezoelectric composite design using a fractal geometry, known as the Sierpinski Gasket (SG), is proposed in order to explore the potential of further extending the operational bandwidth and sensitivity of the transducer. Two equivalent 1-3 piezocomposite designs are compared to this end, one with a conventional periodic parallelepiped shaped pillar structure and one with the SG fractal geometry, both theoretically, using a finite element (FE) analysis package, and experimentally. The transmit voltage response and open circuit voltage response are used to illustrate bandwidth improvement from the fractal composite design. Following the simulation results, a 580 kHz single element transducer, utilizing the proposed SG fractal microstructure, is fabricated using a pillar placement methodology. The performance of the prototyped device is characterized and compared with a conventional 1-3 composite design, as well as with a commercial ultrasound transducer. In the one-way transmission mode, a bandwidth improvement of 27.2 % and sensitivity enhancement of 3.8 dB can be found with the SG fractal design compared to an equivalent conventional composite design and up 105.1 % bandwidth improvement when compared to the commercial transducer. In the one-way reception mode, the bandwidth improvement for the SG fractal design is 2.5 % and 32.9 % when compared to the conventional and commercial transducers, respectively.