People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sherratt, Michael J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2016Frequency-modulated atomic force microscopy localises viscoelastic remodelling in the ageing sheep aortacitations
- 2014Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructscitations
- 2014Localized micro- and nano-scale remodelling in the diabetic aortacitations
- 2012Multi-layer phase analysis: Quantifying the elastic properties of soft tissues and live cells with ultra-high-frequency scanning acoustic microscopycitations
- 2011Quantifying micro-mechanical properties of soft biological tissues with scanning acoustic microscopycitations
- 2011Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogelscitations
- 2008Nanoindentation of histological specimens using an extension of the Oliver and Pharr methodcitations
Places of action
Organizations | Location | People |
---|
article
Multi-layer phase analysis: Quantifying the elastic properties of soft tissues and live cells with ultra-high-frequency scanning acoustic microscopy
Abstract
Scanning acoustic microscopy is potentially a powerful tool for characterizing the elastic properties of soft biological tissues and cells. In this paper, we present a method, multi-layer phase analysis (MLPA), which can be used to extract local speed of sound values, for both thin tissue sections mounted on glass slides and cultured cells grown on cell culture plastic, with a resolution close to 1 m. The method exploits the phase information that is preserved in the interference between the acoustic wave reflected from the substrate surface and internal reflections from the acoustic lens. In practice, a stack of acoustic images are captured beginning with the acoustic focal point 4 m above the substrate surface and moving down in 0.1-m increments. Scanning parameters, such as acoustic wave frequency and gate position, were adjusted to obtain optimal phase and lateral resolution. The data were processed offline to extract the phase information with the contribution of any inclination in the substrate removed before the calculation of sound speed. Here, we apply this approach to both skin sections and fibroblast cells, and compare our data with the V(f) (voltage versus frequency) method that has previously been used for characterization of soft tissues and cells. Compared with the V(f) method, the MPLA method not only reduces signal noise but can be implemented without making a priori assumptions with regards to tissue or cell parameters. © 2012 IEEE.