People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khuri-Yakub, Butrus T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2013Integrated Circuits for Volumetric Ultrasound Imaging With 2-D CMUT Arrayscitations
- 2013A Comparison Between Conventional and Collapse-Mode Capacitive Micromachined Ultrasonic Transducers in 10-MHz 1-D Arrayscitations
- 2012Volumetric Real-Time Imaging Using a CMUT Ring Arraycitations
- 2012Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Arraycitations
- 2011Chemical Vapor Detection Using a Capacitive Micromachined Ultrasonic Transducercitations
- 20103-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array.
- 2009Three-Dimensional Photoacoustic Imaging Using a Two-Dimensional CMUT Arraycitations
- 2009An Integrated Circuit With Transmit Beamforming Flip-Chip Bonded to a 2-D CMUT Array for 3-D Ultrasound Imagingcitations
- 2009Wafer-Bonded 2-D CMUT Arrays Incorporating Through-Wafer Trench-Isolated Interconnects with a Supporting Framecitations
- 2008Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imagingcitations
- 2007Integration of trench-isolated through-wafer interconnects with 2d capacitive micromachined ultrasonic transducer arrayscitations
- 2007Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrayscitations
- 20063-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications
Places of action
Organizations | Location | People |
---|
article
Wafer-Bonded 2-D CMUT Arrays Incorporating Through-Wafer Trench-Isolated Interconnects with a Supporting Frame
Abstract
This paper reports on wafer-bonded, fully populated 2-D capacitive micromachined ultrasonic transducer (CMUT) arrays. To date, no successful through-wafer via fabrication technique has been demonstrated that is compatible with the wafer-bonding method of making CMUT arrays. As an alternative to through-wafer vias, trench isolation with a supporting frame is incorporated into the 2-D arrays to provide through-wafer electrical connections. The CMUT arrays are built on a silicon-on-insulator (SOI) wafer, and all electrical connections to the array elements are brought to the back side of the wafer through the highly conductive silicon substrate. Neighboring array elements are separated by trenches on both the device layer and the bulk silicon. A mesh frame structure, providing mechanical support, is embedded between silicon pillars, which electrically connect to individual elements. We successfully fabricated a 16 x 16-element 2-D CMUT array using wafer bonding with a yield of 100%. Across the array, the pulse-echo amplitude distribution is uniform (rho = 6.6% of the mean amplitude). In one design, we measured a center frequency of 7.6 MHz, a peak-to-peak output pressure of 2.9 MPa at the transducer surface, and a 3-dB fractional bandwidth of 95%. Volumetric ultrasound imaging was demonstrated by chip-to-chip bonding one of the fabricated 2-D arrays to a custom-designed integrated circuit (IC). This study shows that through-wafer trench-isolation with a supporting frame is a viable solution for providing electrical interconnects to CMUT elements and that 2-D arrays fabricated using waferbonding deliver good performance.