Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Robertson, D. C.

  • Google
  • 5
  • 5
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2006Comparison of the performance of pmn-pt single-crystal and ceramic composite arrays for NDE applications8citations
  • 2006Comparison of the frequency and physical nature of the lowest order parasitic mode in single crystal and ceramic 2-2 and 1-3 piezoelectric composite transducers14citations
  • 2004Minimisation of mechanical cross talk in periodic piezoelectric composite arrays6citations
  • 2003Comparison of mechanical cross talk in single crystal and ceramic periodic piezoelectric composite arrays7citations
  • 2002Lamb wave suppression in periodic 1-3 piezoelectric composite transducers2citations

Places of action

Chart of shared publication
Hayward, G.
5 / 23 shared
Murray, V.
1 / 2 shared
Gachagan, Anthony
5 / 76 shared
Reynolds, P.
2 / 3 shared
Hyslop, J.
1 / 2 shared
Chart of publication period
2006
2004
2003
2002

Co-Authors (by relevance)

  • Hayward, G.
  • Murray, V.
  • Gachagan, Anthony
  • Reynolds, P.
  • Hyslop, J.
OrganizationsLocationPeople

article

Comparison of the frequency and physical nature of the lowest order parasitic mode in single crystal and ceramic 2-2 and 1-3 piezoelectric composite transducers

  • Robertson, D. C.
  • Hayward, G.
  • Gachagan, Anthony
Abstract

This work describes an investigation into the first order parasitic mode (i.e., that closest to the fundamental thickness mode) that can occur in 2-2 and 1-3 thickness drive piezoelectric composite transducers. Specifically, the authors compare the performance of piezoceramic and piezocrystal composites with a common passive phase. A local Lamb wave approach is used to describe the generation of such modes, and the validity of this theory is investigated over the entire volume fraction range. It is shown that, when the parasitic mode is primarily generated by Lamb wave activity in the passive phase, both active materials demonstrate similar behavior. However, at higher volume fractions, the first order mode is related to the lateral resonance of the active material, and quite different behavior may be observed between the two sets of devices. The phase velocity of the parasitic modes in each device configuration was investigated by a combination of experimental measurement on a number of transducers along with simulations using the finite-element code PZFlex. Both 2-2 and 1-3 composites made from the single crystal materials pzn-4.5%pt, pzn-8%pt, and pmn-30%pt were investigated along with composites made from pzt5h ceramic. The PZFlex results are compared with experimental impedance analysis and laser scanning of surface displacement, with good agreement demonstrated. By comparing two very different active materials, additional insight into parasitic resonant activity within composite devices is demonstrated.

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • phase
  • theory
  • simulation
  • composite
  • ceramic