Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wallace, Vincent

  • Google
  • 4
  • 40
  • 360

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Submillimeter-Wave Permittivity Measurements of Bound Water in Collagen Hydrogels via Frequency Domain Spectroscopy13citations
  • 2018Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids254citations
  • 2015A dielectric model of human breast tissue in terahertz regime60citations
  • 2015The Potential of the Double Debye Parameters to Discriminate between Basal Cell Carcinoma and Normal Skin33citations

Places of action

Chart of shared publication
Salkola, Mika
1 / 1 shared
Taylor, Zachary D.
1 / 1 shared
Sun, Qiushuo
1 / 1 shared
Anttila, Juha
1 / 1 shared
Baggio, Mariangela
1 / 3 shared
Brown, Elliot R.
1 / 1 shared
Pickwell-Macpherson, Emma
1 / 1 shared
Deng, Sophie X.
1 / 2 shared
Ala-Laurinaho, Juha
1 / 16 shared
Tamminen, Aleksi
1 / 6 shared
Maloney, Thaddeus
1 / 6 shared
Nefedova, Irina
1 / 5 shared
Tuchin, V. V.
1 / 1 shared
Vaks, V. L.
1 / 1 shared
Son, J. H.
1 / 1 shared
Konovko, A. A.
1 / 1 shared
Feldman, Yu
1 / 1 shared
Chernomyrdin, N. V.
1 / 3 shared
Smolyanskaya, O. A.
1 / 1 shared
Cheon, H.
1 / 1 shared
Nazarov, M. M.
1 / 2 shared
Mounaix, P.
1 / 6 shared
Cherkasova, O. P.
1 / 1 shared
Coutaz, J. L.
1 / 3 shared
Yaroslavsky, A. N.
1 / 1 shared
Ozheredov, I. A.
1 / 1 shared
Shkurinov, A. P.
1 / 1 shared
Zaytsev, K. I.
1 / 1 shared
Kistenev, Yu V.
1 / 1 shared
Kozlov, S. A.
1 / 1 shared
Guillet, J. P.
1 / 1 shared
Popov, I.
1 / 7 shared
Nguyen, H. T.
1 / 3 shared
Fitzgerald, Anthony
1 / 1 shared
Tuan, H.
1 / 1 shared
Truong, B. C. Q.
1 / 1 shared
Nguyen, Hung T.
1 / 1 shared
Fitzgerald, Anthony J.
1 / 1 shared
Tuan, Hoang Duong
1 / 1 shared
Truong, Bao C. Q.
1 / 1 shared
Chart of publication period
2021
2018
2015

Co-Authors (by relevance)

  • Salkola, Mika
  • Taylor, Zachary D.
  • Sun, Qiushuo
  • Anttila, Juha
  • Baggio, Mariangela
  • Brown, Elliot R.
  • Pickwell-Macpherson, Emma
  • Deng, Sophie X.
  • Ala-Laurinaho, Juha
  • Tamminen, Aleksi
  • Maloney, Thaddeus
  • Nefedova, Irina
  • Tuchin, V. V.
  • Vaks, V. L.
  • Son, J. H.
  • Konovko, A. A.
  • Feldman, Yu
  • Chernomyrdin, N. V.
  • Smolyanskaya, O. A.
  • Cheon, H.
  • Nazarov, M. M.
  • Mounaix, P.
  • Cherkasova, O. P.
  • Coutaz, J. L.
  • Yaroslavsky, A. N.
  • Ozheredov, I. A.
  • Shkurinov, A. P.
  • Zaytsev, K. I.
  • Kistenev, Yu V.
  • Kozlov, S. A.
  • Guillet, J. P.
  • Popov, I.
  • Nguyen, H. T.
  • Fitzgerald, Anthony
  • Tuan, H.
  • Truong, B. C. Q.
  • Nguyen, Hung T.
  • Fitzgerald, Anthony J.
  • Tuan, Hoang Duong
  • Truong, Bao C. Q.
OrganizationsLocationPeople

article

The Potential of the Double Debye Parameters to Discriminate between Basal Cell Carcinoma and Normal Skin

  • Wallace, Vincent
  • Nguyen, Hung T.
  • Fitzgerald, Anthony J.
  • Tuan, Hoang Duong
  • Truong, Bao C. Q.
Abstract

<p>The potential of terahertz imaging for improving the efficiency of Mohs's micrographic surgery in terms of tumor margin detection was previously studied. Thanks to high water content of human skin, its dielectric response to terahertz radiation can be described by the double Debye model which uses five parameters to fit experimental data. Skin tumors typically have a higher water content than normal tissues do, and this should be apparent in the parameters. The goal of this paper is to apply statistical methods to these parameters to test their power to differentiate skin cancer from normal tissue. Based on the prediction accuracy estimated using a cross-validation method, we found the best classifier was the static permittivity at low frequency (ε<sub>s</sub>). By combining the most relevant parameters, we obtained a classification accuracy of 95.7%, confirming the classification capability of the parameters, thereby supporting their application to improve terahertz imaging for the purpose of skin cancer delineation.</p>

Topics
  • impedance spectroscopy