People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kamat, Amar M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Piezoresistive 3D graphene-PDMS spongy pressure sensors for IoT enabled wearables and smart productscitations
- 20213D Printed Graphene-Coated Flexible Lattice as Piezoresistive Pressure Sensorcitations
- 2021Optimizing harbor seal whisker morphology for developing 3D-printed flow sensorcitations
- 2021Optimizing harbor seal whisker morphology for developing 3D-printed flow sensorcitations
- 2021Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors using Sacrificial Metal 3D Printingcitations
- 2021Fabrication of polymeric microstructures
- 2021Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica mouldingcitations
- 2021Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica mouldingcitations
- 2020PDMS Flow Sensors With Graphene Piezoresistors Using 3D Printing and Soft Lithographycitations
- 2019Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Castingcitations
- 2019Fish-inspired flow sensing for biomedical applications
- 2019Laser-Sustained Plasma (LSP) Nitriding of Titanium: A Reviewcitations
- 2019Laser-sustained plasma (LSP) nitriding of titanium:A reviewcitations
- 2017A two-step laser-sustained plasma nitriding process for deep-case hardening of commercially pure titaniumcitations
- 2017Enhancement of CP-titanum wear resistance using a two-step CO2 laser-sustained plasma nitriding processcitations
- 2016Effect of CO 2 Laser-Sustained Nitrogen Plasma on Heat and Mass Transfer During Laser-Nitriding of Commercially-Pure Titaniumcitations
Places of action
Organizations | Location | People |
---|
document
3D Printed Graphene-Coated Flexible Lattice as Piezoresistive Pressure Sensor
Abstract
Piezoresistive sponges represent a popular design for highly flexible pressure sensors and are typically fabricated using templating methods. In this work, we used stereolithography (SLA) to 3D-print an elastomeric body-centered cubic (BCC) lattice structure with a relative density of 21% and an elastic modulus of 31.5 kPa. The lattice was dip-coated with graphene nanoplatelets to realize a piezoresistive pressure sensor with excellent performance (gauge factor = 3.25, sensitivity = 0.1 kPa-1), high deformability (up to 60 % strain), and repeatability. The novel approach outlined in this work offers greater control over the microstructure and can be used to fabricate sensors with tunable properties.