Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Filipe Miguel Faria Da

  • Google
  • 5
  • 8
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023The design and optimization of the down-lead system for a novel 400 kV composite pylon10citations
  • 2020Lightning Shielding Performance of Fully Composite Pyloncitations
  • 2020Fiber Reinforced Plastic (FRP) Composite Selection for the Composite Cross-Arm Corecitations
  • 2019Electrical Design of 400 kV Composite Tower15citations
  • 2015Contributions for the modelling of submarine cables – current density and simplified modelling of wired layerscitations

Places of action

Chart of shared publication
Bak, Claus Leth
5 / 7 shared
Ghomi, Mohammad
1 / 1 shared
Yin, Kai
1 / 1 shared
Zhang, Hanchi
1 / 1 shared
Skouboe, Henrik
1 / 1 shared
Wang, Qian
4 / 11 shared
Jahangiri, Tohid
3 / 4 shared
Ebdrup, Thomas
1 / 1 shared
Chart of publication period
2023
2020
2019
2015

Co-Authors (by relevance)

  • Bak, Claus Leth
  • Ghomi, Mohammad
  • Yin, Kai
  • Zhang, Hanchi
  • Skouboe, Henrik
  • Wang, Qian
  • Jahangiri, Tohid
  • Ebdrup, Thomas
OrganizationsLocationPeople

article

The design and optimization of the down-lead system for a novel 400 kV composite pylon

  • Silva, Filipe Miguel Faria Da
  • Bak, Claus Leth
  • Ghomi, Mohammad
  • Yin, Kai
  • Zhang, Hanchi
  • Skouboe, Henrik
  • Wang, Qian
Abstract

This paper presents systematic research of a grounding down-lead design and its optimization for a novel Y-shaped composite pylon. A grounding down-lead inside the cross-arm is proposed as a potential grounding method. The transient response to lightning surges is modeled in PSCAD/EMTDC for a flash of lightning striking at the tip of the pylon. Aiming at the characteristic of the pylon structure, we propose theoretical formulas to calculate the surge impedance of the inclined down-lead circumscribed by composite materials. Besides, potential multi-factors affecting BFR such as the configuration as well as the length of the down-lead, the pylon span, the dielectric constant of the filling material, the electromagnetic propagation speed of the lightning, and the capacitances between down-lead and phase conductors are investigated, after which the grounding lead system of the pylon and filling materials are determined. Afterwards, the applicability of the multi-down-lead system to increase critical current (Ic) is discussed considering the lightning current capacity and the corona generation. Finally, we verify the insulation of the down-lead system. Compared with that of traditional Eagle and Donau towers, the backflashover rate (BFR) of the Y-shaped pylon with an optimized down-lead system is lower than that of traditional ones.

Topics
  • impedance spectroscopy
  • phase
  • dielectric constant
  • composite
  • wire
  • ion chromatography