People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sundaram, S. K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2013Sublimation-Condensation of Multiscale Tellurium Structurescitations
- 2009DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applicationscitations
- 2008ASGRAD FY07 Annual Report
- 2007FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)
- 2007Differential etching of chalcogenides for infrared photonic waveguide structurescitations
- 2006Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography
- 2006Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
- 2005FY 2005 Infrared Photonics Final Report
- 2004Laser Writing in Arsenic Trisulfide Glass
- 2004FY 2004 Infrared Photonics Final Report
- 2004Chalcogenide glasses and structures for quantum sensing
Places of action
Organizations | Location | People |
---|
article
DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applications
Abstract
DC ionization conductivity measurements were used to characterize the electrical response of amorphous semi-conductors to ionizing radiation. Two different glass systems were examined: a chalcopyrite glass (CdGexAs2; for x = 0.45-1.0) with a tetrahedrally coordinated structure and a chalcogenide glass (As40Se(60-x)Tex; where x = 0-12), with a layered or three dimensionally networked structure, depending on Te content. Changes in DC ionization current were measured as a function of the type of radiation (α or γ), dose rate, applied bias voltage, specimen thickness and temperature. These results demonstrate the potential of these materials for radiation detection applications.