People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Praeger, Matthew
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2021Laser Induced Backwards Transfer (LIBT) of graphene onto glass
- 2020Microscale deposition of 2D materials via laser induced backwards transfer
- 2020Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learningcitations
- 2019Automated 3D labelling of fibroblasts in SEM-imaged placenta using deep learning
- 2017The effects of water on the dielectric properties of aluminum based nanocompositescitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocomposites: Part II – Charge Transportcitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocompositescitations
- 2017The effects of water on the dielectric properties of silicon based nanocompositescitations
- 2016Supporting data for "The effects of water on the dielectric properties of silicon based nanocomposites"
- 2015The effects of surface hydroxyl groups in polyethylene-silica nanocomposites
- 2014Dielectric studies of polystyrene-based, high-permittivity composite systemscitations
- 2014Effect of water absorption on dielectric properties of nano-silica/polyethylene compositescitations
- 2014A simple theoretical model for the bulk properties of nanocomposite materialscitations
- 2014Barium titanate and the dielectric response of polystyrene-based composites
- 2013A dielectric spectroscopy study of the polystyrene/nanosilica model system
- 2013Nano-Silica Filled Polystyrene: Correlating DC Breakdown Strength and Particle Agglomeration.
- 2013The breakdown strength and localised structure of polystyrene as a function of nanosilica fill-fraction
- 2012Fabrication of nanoscale glass fibers by electrospinningcitations
Places of action
Organizations | Location | People |
---|
article
The effects of water on the dielectric properties of aluminum based nanocomposites
Abstract
A series of polyethylene nanocomposites was prepared utilizing aluminum nitride or alumina nano-powders with comparable morphologies. These were subsequently subjected to different conditioning regimes, namely prolonged storage in vacuum, the ambient laboratory environment or in water. The effect of filler loading and conditioning (i.e. water content) on their morphological and dielectric properties was then examined. Measurements indicated that, in the case of aluminum nitride nanocomposites, none of the conditioning regimes led to significant absorption of water and, as such, neither the dielectric properties nor the DC conductivity varied. Conversely, the alumina nanocomposites were prone to the absorption of an appreciable mass of water, which resulted in them displaying a broad dielectric relaxation, which shifted to higher frequencies, and a higher DC electrical conductivity. We ascribe these different effects to the interfacial surface chemistry present in each system and, in particular, the propensity for hydrogen bonding with water molecules diffusing through the host matrix. Technologically, the use of nanocomposites based upon systems such as aluminum nitride, in place of the commonly used metal oxides (alumina, silica, etc.), eliminates variations in dielectric properties due to absorption of environmental water without resorting to the adoption of techniques such as surface functionalization or calcination in an attempt to render nanoparticle surface chemistry hydrophobic.