People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skaik, Talal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024CNC-Machined and 3D-Printed Metal G-band Diplexers for Earth Observation Applicationscitations
- 2023A monolithically printed filtering waveguide aperture antennacitations
- 2023Lightweight, High-Q and High Temperature Stability Microwave Cavity Resonators Using Carbon-Fiber Reinforced Silicon-Carbide Ceramic Compositecitations
- 2023Compact Self-Supportive Filters Suitable for Additive Manufacturingcitations
- 2023Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irisescitations
- 2023Evaluation of 3D printed monolithic G-band waveguide componentscitations
- 2022A 3D printed 300 GHz waveguide cavity filter by micro laser sinteringcitations
- 2022D-band waveguide diplexer fabricated using micro laser sinteringcitations
- 2022A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXscitations
- 2022Thermal stability analysis of 3D printed resonators using novel materialscitations
- 2021125 GHz frequency doubler using a waveguide cavity produced by stereolithographycitations
- 2020180 GHz Waveguide Bandpass Filter Fabricated by 3D Printing Technologycitations
Places of action
Organizations | Location | People |
---|
article
A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXs
Abstract
<p>A 3-D printed narrowband bandpass filter based on spherical dual-mode resonators is presented in this article. It is designed for output multiplexers (OMUXs) using high-Q spherical dual-mode resonators. Realization is by laser powder bed fusion (L-PBF) technology of Invar alloy chosen for its low coefficient of thermal expansion (CTE). Using PBF circumvents the alloy's manufacturability issues associated with its hardness in machining and free forming. Compared with polymer-based vat photopolymerization technology, PBF allows for direct metal manufacture of complex monolithic microwave components with better thermal-mechanical properties and higher power-handling capability. Using Invar can further help achieve high temperature stability of the filter in high-power operation. To demonstrate the proposed solution, detailed thermal-RF test at different temperatures was carried out. The experimental results of a 0.47&#x0025; fourth-order silver-plated Invar filter with two transmission zeros verify the design and manufacturing. An insertion loss of 1 dB and an effective temperature coefficient of less than 2 ppm/K were achieved.</p>