Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paredes, Ferran

  • Google
  • 4
  • 6
  • 122

Universitat Autònoma de Barcelona

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 20203-D-Printed High Data-Density Electromagnetic Encoders Based on Permittivity Contrast for Motion Control and Chipless-RFID45citations
  • 20203-D-Printed High Data-Density Electromagnetic Encoders Based on Permittivity Contrast for Motion Control and Chipless-RFID45citations
  • 20203D-printed all-dielectric electromagnetic encoders with synchronous reading for measuring displacements and velocities16citations
  • 20203D-printed all-dielectric electromagnetic encoders with synchronous reading for measuring displacements and velocities16citations

Places of action

Chart of shared publication
Bonache Albacete, Jordi
1 / 2 shared
Martãn, Ferran
2 / 20 shared
Herrojo, Cristian
4 / 4 shared
Bonache, Jordi
1 / 11 shared
Martin, Ferran
1 / 13 shared
Martín, Ferran
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Bonache Albacete, Jordi
  • Martãn, Ferran
  • Herrojo, Cristian
  • Bonache, Jordi
  • Martin, Ferran
  • Martín, Ferran
OrganizationsLocationPeople

article

3-D-Printed High Data-Density Electromagnetic Encoders Based on Permittivity Contrast for Motion Control and Chipless-RFID

  • Bonache, Jordi
  • Paredes, Ferran
  • Martin, Ferran
  • Herrojo, Cristian
Abstract

<p>The 3-D-printed electromagnetic encoders based on permittivity contrast are presented and discussed in this article. The encoders, implemented using exclusively dielectric materials, are based on linear chains of dielectric inclusions. Two types of encoders are considered: 1) those where the inclusions are simple apertures made on a 3-D-printed dielectric plate (or substrate) and 2) those with inclusions made of high dielectric constant material 3-D-printed on a dielectric substrate (also 3-D-printed). In both cases, encoding is achieved by varying the dielectric constant of the substrate at predefined positions by means of the inclusions. For encoder reading, a microstrip line loaded with a slot resonator (etched in the ground plane) and a series gap is proposed. Such structure is very sensitive to short range dielectric constant variations, being able to detect the presence or absence of closely spaced inclusions when the encoder is displaced on top of the sensitive part of the reader, the slot resonator. For that purpose, the reader line is fed by a harmonic signal conveniently tuned, so that an amplitude-modulated (AM) signal containing the identification (ID) code is generated at the output port of the line. The proposed reader/encoder system is useful for motion control applications (linear displacement and velocity sensors) and for near-field chipless-radio frequency ID (RFID). Lower cost and major robustness against mechanical wearing are potential advantages of these encoders over other electromagnetic encoders based on a similar principle but based on metallic inclusions.</p>

Topics
  • density
  • impedance spectroscopy
  • inclusion
  • dielectric constant
  • additive manufacturing