Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hunter, Robert Iain

  • Google
  • 2
  • 3
  • 76

University of St Andrews

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Design of high-performance millimeter wave and sub-millimeter wave quasi-optical isolators and circulators38citations
  • 2007Design of high-performance millimeter wave and sub-millimeter wave quasi-optical isolators and circulators38citations

Places of action

Chart of shared publication
Goy, P.
2 / 3 shared
Smith, Graham Murray
2 / 5 shared
Robertson, Duncan Alexander
2 / 2 shared
Chart of publication period
2010
2007

Co-Authors (by relevance)

  • Goy, P.
  • Smith, Graham Murray
  • Robertson, Duncan Alexander
OrganizationsLocationPeople

article

Design of high-performance millimeter wave and sub-millimeter wave quasi-optical isolators and circulators

  • Goy, P.
  • Smith, Graham Murray
  • Hunter, Robert Iain
  • Robertson, Duncan Alexander
Abstract

Faraday rotators using permanently magnetized ferrite materials are used to make quasi-optical isolators and circulators at millimeter wave and sub-millimeter wave frequencies that have far higher performance than their waveguide equivalents. This paper demonstrates state-of-the-art performance for four-port quasi-optical circulators with 60-dB isolation, 0.2-dB insertion loss, and better than 80-dB return loss for devices centered at 94 GHz. A method is presented for the accurate characterization of the complex permeability and permittivity of permanently magnetized ferrites via a series of frequency and polarization dependent transmission and reflection measurements. The dielectric and magnetic parameters for the sample are determined by fitting theoretical curves to the measured data. These fitted parameters are then used in a model for a complete quasi-optical Faraday rotator, including matching layers, allowing the accurate design and fabrication of these devices for any specific operational frequency band in the millimeter wave and sub-millimeter wave regime. Examples are given showing typical results and demonstrating how temperature cycling can significantly improve the temperature stability of these devices, while allowing fine tuning of the center frequency. We also indicate the performance possible at higher frequencies to above 1 THz and outline performance of truly planar isolators where lossy polarizer material is built into the Faraday rotator matching structure.

Topics
  • impedance spectroscopy
  • permeability