People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baumgartner, Christian
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Deep learning-based image registration in dynamic myocardial perfusion CT imagingcitations
- 2023ChatGPT in Medicine: Ark of the Covenant or Pandora’s Box? Present status and future perspectives: how, what, who and where? (Preprint)
- 2023Fully Printed Flexible Ultrasound Transducer for Medical Applicationscitations
- 2022Best Research Papers in the Field of Sensors, Signals, and Imaging Informatics 2021citations
- 2021Investigation of materials and morphologies on signal qualities of a fully printed tattoo single channel PVDF transducer
- 2021Notable Papers and New Directions in Sensors, Signals, and Imaging Informaticscitations
- 2017A new input device for spastics based on strain gaugecitations
Places of action
Organizations | Location | People |
---|
article
Deep learning-based image registration in dynamic myocardial perfusion CT imaging
Abstract
Registration of dynamic CT image sequences is a crucial preprocessing step for clinical evaluation of multiple physiological determinants in the heart such as global and regional myocardial perfusion. In this work, we present a deformable deep learning-based image registration method for quantitative myocardial perfusion CT examinations, which in contrast to previous approaches, takes into account some unique challenges such as low image quality with less accurate anatomical landmarks, dynamic changes of contrast agent concentration in the heart chambers and tissue, and misalignment caused by cardiac stress, respiration, and patient motion. The introduced method uses a recursive cascade network with a ventricle segmentation module, and a novel loss function that accounts for local contrast changes over time. It was trained and validated on a dataset of n = 118 patients with known or suspected coronary artery disease and/or aortic valve insufficiency. Our results demonstrate that the proposed method is capable of registering dynamic cardiac perfusion sequences by reducing local tissue displacements of the left ventricle (LV), whereas contrast changes do not affect the registration and image quality, in particular the absolute CT (HU) values of the entire CT sequence. In addition, the deep learning-based approach presented reveals a short processing time of a few seconds compared to conventional image registration methods, demonstrating its application potential for quantitative CT myocardial perfusion measurements in daily clinical routine.