People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sinkus, Ralph
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Biomechanical Assessment of Liver Integrity: Prospective Evaluation of Mechanical Versus Acoustic <scp>MR</scp> Elastographycitations
- 2020On the origin of frequency power-law for tissue mechanics in elastography
- 2019Magnetic resonance elastography of skeletal muscle deep tissue injurycitations
- 2019Magnetic resonance elastography of skeletal muscle deep tissue injury
- 2015MR Elastography Can Be Used to Measure Brain Stiffness Changes as a Result of Altered Cranial Venous Drainage During Jugular Compressioncitations
- 2014Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography.citations
- 2014Viscoelastic parameters for quantifying liver fibrosiscitations
- 2013Measuring anisotropic muscle stiffness properties using elastographycitations
- 2013Curl-based Finite Element Reconstruction of the Shear Modulus Without Assuming Local Homogeneitycitations
- 2011Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine livercitations
- 2011Viscoelastic properties of the tongue and soft palate using MR elastographycitations
- 2009Magnetic resonance elastography in the liver at 3 Tesla using a second harmonic approachcitations
- 2008In vivo brain viscoelastic properties measured by magnetic resonance elastographycitations
- 2007MR elastography of breast lesionscitations
- 2005Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastographycitations
Places of action
Organizations | Location | People |
---|
article
Curl-based Finite Element Reconstruction of the Shear Modulus Without Assuming Local Homogeneity
Abstract
In elasticity imaging, the shear modulus is obtained from measured tissue displacement data by solving an inverse problem based on the wave equation describing the tissue motion. In most inversion approaches, the wave equation is simplified using local homogeneity and incompressibility assumptions. This causes a loss of accuracy and therefore imaging artifacts in the resulting elasticity images. In this paper we present a new curl-based finite element method (c-FEM) inversion technique that does not rely upon these simplifying assumptions. As done in previous research, we use the curl operator to eliminate the dilatational term in the wave equation, but we do not make the assumption of local homogeneity. We evaluate our approach using simulation data from a virtual tissue phantom assuming time harmonic motion and linear, isotropic, elastic behavior of the tissue. We show that our reconstruction results are superior to those obtained using previous curl-based methods with homogeneity assumption. We also show that with our approach, in the 2D case, multi-frequency measurements provide better results than single-frequency measurements. Experimental results from magnetic resonance elastography of a CIRS elastography phantom confirm our simulation results and further demonstrate, in a quantitative and repeatable manner, that our method is accurate and robust.