People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rossiter, Jonathan M.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Soft alchemycitations
- 2024Soft alchemy:a comprehensive guide to chemical reactions for pneumatic soft actuationcitations
- 2023Robotic Fish driven by Twisted and Coiled Polymer Actuators at High Frequencies
- 2023Electric Field-Driven Dielectrophoretic Elastomer Actuatorscitations
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2021Liquid metal logic for soft roboticscitations
- 2021B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prosthesescitations
- 2021B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prosthesescitations
- 2019Lighting up soft roboticscitations
- 2019Pellicular Morphing Surfaces for Soft Robotscitations
- 2019Electroactive textile actuators for breathability control and thermal regulation devicescitations
- 2019A soft matter computer for soft robotscitations
- 2019Thermoplastic electroactive gels for 3D-printable artificial musclescitations
- 2019Tiled Auxetic Cylinders for Soft Robotscitations
- 2018Electroactive textile actuators for wearable and soft robotscitations
- 2018Towards electroactive gel artificial muscle structurescitations
- 2017Respiratory Simulator for Robotic Respiratory Tract Treatments
- 2017Robotics, Smart Materials, and Their Future Impact for Humans
- 2016Biomimetic photo-actuationcitations
- 2015Hiding the squid:patterns in artificial cephalopod skincitations
- 2015Hiding the squidcitations
- 2015Modelling and analysis of pH responsive hydrogels for the development of biomimetic photo-actuating structurescitations
- 2015A compliant soft-actuator laterotactile displaycitations
- 2014Thermal response of novel shape memory polymer-shape memory alloy hybridscitations
- 2014Hydrogel core flexible matrix composite (H-FMC) actuatorscitations
- 2014Kirigami design and fabrication for biomimetic roboticscitations
- 2014Shape memory polymer hexachiral auxetic structures with tunable stiffnesscitations
- 2014Assessment of Biodegradable Materials for Next Generation of Artificial Muscles
- 2014Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plantscitations
- 2012Curved Type Pneumatic Artificial Rubber Muscle Using Shape-Memory Polymer
- 2012Bioinspired Control of Electro-Active Polymers for Next Generation Soft Robotscitations
- 2012Smart Radially Folding Structurescitations
- 2012Design of a deployable structure with shape memory polymerscitations
Places of action
Organizations | Location | People |
---|
article
Smart Radially Folding Structures
Abstract
In this paper, we present novel methods for exploiting passive and active radially folding mechanisms for reactive and dynamic structures. These enable the application of radially folding structures in domains including fluidics, medical stents, and auxetic materials. A compact form of elastic deployment utilizing linkage strain energy is proposed using beam theory analysis. Elastic strain energy is also shown to produce bistable folding behavior, with two low energy states at full contraction and full expansion, and a bistable switching point at some intermediate position. Polymeric smart materials are investigated for driving active folding. These materials can be readily exploited through the features of the folding structure including its ability to resolve 1-D, 2-D, and 3-D actuation strains into a more effective single degree-of-freedom linear, areal, volumetric or rotational output. The elastic and solid-state nature of many polymeric smart materials means they can implement elastic deployment and bistability. A thermally-activated shape memory polymer is shown to fold a 4-segment structure from expanded to contracted states. Experimental testing of an 8-segment dielectric elastomer actuator prototype demonstrates that radially folding structures can resolve large biaxial planar strains generated by dielectric elastomers into a single linear or rotational output stroke. ; In this paper, we present novel methods for exploiting passive and active radially folding mechanisms for reactive and dynamic structures. These enable the application of radially folding structures in domains including fluidics, medical stents, and auxetic materials. A compact form of elastic deployment utilizing linkage strain energy is proposed using beam theory analysis. Elastic strain energy is also shown to produce bistable folding behavior, with two low energy states at full contraction and full expansion, and a bistable switching point at some intermediate position. Polymeric smart materials are investigated for driving active ...