Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rasilo, Paavo

  • Google
  • 13
  • 28
  • 130

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 20242-D Axisymmetric FEM-Based Approach for Identifying Dimension- and Frequency-Independent Material Parameters of Mn-Zn Ferrites3citations
  • 2023Eddy-Current Loss Model for Soft Magnetic Composite Materials Considering Particle Size Distribution12citations
  • 2022Finite element level validation of an anisotropic hysteresis model for non-oriented electrical steel sheets5citations
  • 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminations6citations
  • 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminations6citations
  • 2020Representation of anisotropic magnetic characteristic observed in a non-oriented silicon steel sheet9citations
  • 2020Analysis of the Magneto-Mechanical Anisotropy of Steel Sheets in Electrical Applications10citations
  • 20163-D Eddy Current Modelling of Steel Laminations to Analyze Edge Effectscitations
  • 2016Modeling and experimental verification of magneto‐mechanical energy harvesting device based on construction steelcitations
  • 2015Analytical model for magnetic anisotropy of non-oriented steel sheets17citations
  • 2015Homogenization Technique for Axially Laminated Rotors of Synchronous Reluctance Machines17citations
  • 2014Segregation of iron losses from rotational field measurements and application to electrical machine34citations
  • 2013Iron losses, magnetoelasticity and magnetostriction in ferromagnetic steel laminations11citations

Places of action

Chart of shared publication
Elkhadrawy, Reda
1 / 1 shared
Tarhasaari, Timo
1 / 1 shared
Tsakaloudi, Vasiliki
1 / 1 shared
Vesa, Joonas
2 / 2 shared
Hyvärinen, Leo
1 / 8 shared
Upadhaya, Brijesh
2 / 3 shared
Handgruber, Paul
2 / 2 shared
Belahcen, Anouar
10 / 26 shared
Arkkio, Antero
6 / 6 shared
Gurbuz, Ismet
1 / 1 shared
Osemwinyen, Osaruyi
2 / 2 shared
Martin, Floran
5 / 12 shared
Gürbüz, Ismet Tuna
1 / 2 shared
Perkkiö, Lauri
1 / 1 shared
Ruzibaev, Avaz
1 / 1 shared
Daniel, Laurent
1 / 33 shared
Benabou, Abdelkader
1 / 9 shared
Bernard, Laurent
1 / 4 shared
Ge, Yanling
1 / 25 shared
Aydin, Ugur
1 / 3 shared
Sundaria, Ravi
1 / 1 shared
Poutala, Jarmo
1 / 1 shared
Kouhia, Reijo
1 / 10 shared
Ahmed, Umair
1 / 1 shared
Ruuskanen, Pekka
1 / 12 shared
Haavisto, Ari
1 / 1 shared
Singh, Deepak
2 / 5 shared
Lehikoinen, Antti
1 / 1 shared
Chart of publication period
2024
2023
2022
2020
2016
2015
2014
2013

Co-Authors (by relevance)

  • Elkhadrawy, Reda
  • Tarhasaari, Timo
  • Tsakaloudi, Vasiliki
  • Vesa, Joonas
  • Hyvärinen, Leo
  • Upadhaya, Brijesh
  • Handgruber, Paul
  • Belahcen, Anouar
  • Arkkio, Antero
  • Gurbuz, Ismet
  • Osemwinyen, Osaruyi
  • Martin, Floran
  • Gürbüz, Ismet Tuna
  • Perkkiö, Lauri
  • Ruzibaev, Avaz
  • Daniel, Laurent
  • Benabou, Abdelkader
  • Bernard, Laurent
  • Ge, Yanling
  • Aydin, Ugur
  • Sundaria, Ravi
  • Poutala, Jarmo
  • Kouhia, Reijo
  • Ahmed, Umair
  • Ruuskanen, Pekka
  • Haavisto, Ari
  • Singh, Deepak
  • Lehikoinen, Antti
OrganizationsLocationPeople

article

Eddy-Current Loss Model for Soft Magnetic Composite Materials Considering Particle Size Distribution

  • Rasilo, Paavo
  • Hyvärinen, Leo
  • Vesa, Joonas
Abstract

Dynamic magnetization curves of soft magnetic materials are often written in terms of magnetic flux density b and magnetic field strength h as h = H(b) + c db/dt , where H is a static magnetization model and c is a real number describing eddy-current effects. In this article, an analytical derivation for c is presented for soft magnetic composite materials. The parameter c will depend explicitly on the conductivity of the material particles as well as the geometry of the particles, described by mean particle volume, variance of the particle volumes, volume fraction of the material and insulation thicknesses. No experimental or empirical parameters appear in c in our treatment. ; Peer reviewed

Topics
  • density
  • impedance spectroscopy
  • strength
  • composite
  • magnetization