People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rasilo, Paavo
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 20242-D Axisymmetric FEM-Based Approach for Identifying Dimension- and Frequency-Independent Material Parameters of Mn-Zn Ferritescitations
- 2023Eddy-Current Loss Model for Soft Magnetic Composite Materials Considering Particle Size Distributioncitations
- 2022Finite element level validation of an anisotropic hysteresis model for non-oriented electrical steel sheetscitations
- 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminationscitations
- 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminationscitations
- 2020Representation of anisotropic magnetic characteristic observed in a non-oriented silicon steel sheetcitations
- 2020Analysis of the Magneto-Mechanical Anisotropy of Steel Sheets in Electrical Applicationscitations
- 20163-D Eddy Current Modelling of Steel Laminations to Analyze Edge Effects
- 2016Modeling and experimental verification of magneto‐mechanical energy harvesting device based on construction steel
- 2015Analytical model for magnetic anisotropy of non-oriented steel sheetscitations
- 2015Homogenization Technique for Axially Laminated Rotors of Synchronous Reluctance Machinescitations
- 2014Segregation of iron losses from rotational field measurements and application to electrical machinecitations
- 2013Iron losses, magnetoelasticity and magnetostriction in ferromagnetic steel laminationscitations
Places of action
Organizations | Location | People |
---|
article
Homogenization Technique for Axially Laminated Rotors of Synchronous Reluctance Machines
Abstract
In this paper, we propose a homogenization technique to model the axially laminated rotor of synchronous reluctance machines. Thus, the computational effort can be significantly reduced by replacing the laminated parts of the rotor by some equivalent anisotropic media. The proposed method is validated in terms of flux density and electromagnetic torque. Some small discrepancies can be noticed due to the air-gap fluctuations caused by the steel sheets and the interlaminar insulation sheets of the rotor. With the test machine, the homogenization method reduces by the number of elements to one-fourth and the computation time to one-third.