Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Franchin, M.

  • Google
  • 3
  • 9
  • 309

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2007Analysis of magnetoresistance in arrays of connected nano-rings13citations
  • 2007Analysis of magnetoresistance in arrays of connected nano-rings13citations
  • 2007A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag283citations

Places of action

Chart of shared publication
Metlushko, V. V.
2 / 2 shared
Bordignon, G.
3 / 4 shared
Fischbacher, T.
3 / 3 shared
Fangohr, Hans
2 / 11 shared
Zhukov, A. A.
2 / 6 shared
Groot, P. A. J. De
1 / 10 shared
Zimmermann, J. P.
2 / 3 shared
Fangohr, H.
1 / 2 shared
De Groot, P. A. J.
1 / 1 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Metlushko, V. V.
  • Bordignon, G.
  • Fischbacher, T.
  • Fangohr, Hans
  • Zhukov, A. A.
  • Groot, P. A. J. De
  • Zimmermann, J. P.
  • Fangohr, H.
  • De Groot, P. A. J.
OrganizationsLocationPeople

article

Analysis of magnetoresistance in arrays of connected nano-rings

  • Metlushko, V. V.
  • Bordignon, G.
  • Fischbacher, T.
  • Fangohr, Hans
  • Zhukov, A. A.
  • Groot, P. A. J. De
  • Franchin, M.
  • Zimmermann, J. P.
Abstract

We study the anisotropic magnetoresistance (AME) of a 2D periodic square array of connected permalloy rings with periodicity of 1m combining experimental and computational techniques. The computational models consists of two parts: 1) the computation of the magnetization and 2) the computation of the current density. For 1), we use standard micromagnetic methods. For 2), we start from a potential difference applied across the sample, compute the resulting electric potential , and subsequently the corresponding current density based on a uniform conductiviy. We take into account the backreaction of the magnetoresistive effects onto the current density by self-consistently computing the current density and conductivity until they converge. We compare the experimentally measured AMR insight into the characteristics of the AMR data. Finally, we demonstrate the importance of taking into account the spatial variation of the current density when computing the AMR.

Topics
  • density
  • anisotropic
  • current density
  • magnetization