Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rand, S.

  • Google
  • 2
  • 7
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2004Novel sputtering-technology for grain-size control44citations
  • 2004Novel sputtering technology for grain-size control44citations

Places of action

Chart of shared publication
Ogrady, K.
2 / 5 shared
Vopsaroiu, M.
1 / 4 shared
Thwaites, M. J.
1 / 2 shared
Grundy, P. J.
1 / 1 shared
Thwaites, M.
1 / 5 shared
Vopson, Melvin Marian
1 / 10 shared
Grundy, P.
1 / 3 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Ogrady, K.
  • Vopsaroiu, M.
  • Thwaites, M. J.
  • Grundy, P. J.
  • Thwaites, M.
  • Vopson, Melvin Marian
  • Grundy, P.
OrganizationsLocationPeople

article

Novel sputtering technology for grain-size control

  • Thwaites, M.
  • Ogrady, K.
  • Vopson, Melvin Marian
  • Rand, S.
  • Grundy, P.
Abstract

In this paper, we present a description of a novel high-rate plasma sputtering system that allows the control of grain size in sputtered films. Additionally, the system has the advantage of a better utilization of the target material (around 80% to 90%) by eliminating the race track at the target as in conventional plasma magnetron sputtering systems. The potential and capabilities of this novel plasma sputtering device are demonstrated in this paper by the deposition of a number of different Cr thin films suitable for underlayers in thin-film media and for which we have performed a systematic X-ray and TEM analysis to determine the grain-size histograms, mean grain diameters, and their relationship to the sputtering processes.

Topics
  • Deposition
  • grain
  • grain size
  • thin film
  • transmission electron microscopy