People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wits, Wessel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Fatigue prediction and life assessment method for metal laser powder bed fusion partscitations
- 2021Graded structures by multi-material mixing in laser powder bed fusioncitations
- 2020Porous materials additively manufactured at low energycitations
- 2020Pulsed mode selective laser melting of porous structures: Structural and thermophysical characterizationcitations
- 2019Experimental investigation of a flat-plate closed-loop pulsating heat pipecitations
- 2018Method to determine thermoelastic material properties of constituent and copper-patterned layers of multilayer printed circuit boardscitations
- 2017An investigation of porous structure characteristics of heat pipes made by additive manufacturingcitations
- 2017Multiscale modelling of agglomeration
- 2017An experimental study towards the practical application of closed-loop flat-plate pulsating heat pipescitations
- 2015Investigation on the Accuracy of CT Porosity Analysis of Additive Manufactured Metallic Parts
- 2015Single scan vector prediction in selective laser meltingcitations
- 2015Laser beam welding of titanium additive manufactured partscitations
- 2014System for fast and accurate filling of a two-phase cooling device, notably a heat pipe, adapted for use in an automated process
- 2013System for fast and accurate filling of a two-phase cooling device, notably a heat pipe, adapted for use in an automated process
- 2010Inkjet Printing of 3D Metallic Silver Complex Microstructures
Places of action
Organizations | Location | People |
---|
document
An investigation of porous structure characteristics of heat pipes made by additive manufacturing
Abstract
<p>Specific properties of porous media such as thermal conductivity and wicking of liquid into the porous structure are of great importance to many applications. Typically, such porous structures are found in two-phase devices, such as heat pipes (HPs). In this study, we have experimentally analysed the effective thermal conductivity and the wicking of different liquids into a stainless steel 316L porous structure fabricated through selective laser melting (SLM) technology. The sample was rectangular shaped with a porosity of 46.5% and outer dimensions of 20×40×1 mm<sup>3</sup>. An experimental apparatus and related procedures for the determination of the effective thermal conductivity of the porous structure saturated with distilled water and Ethylene glycol are discussed. The experimentally measured values of effective thermal conductivity are compared with correlations available in the literature. The standard Washburn wicking model is taken into account for the analysis. We describe the application of the Washburn equation to measure the contact angle of a printed porous sample with three test liquids; n-Hexane, water and Ethylene glycol are used to measure contact angles. The experimental results verify that SLM technology can be used to fabricate porous structures for HP technology. The results show an effective thermal conductivity in the range of 1.8-6.0 W/mK for different working fluids.</p>